Bag of Tricks

By Don Worth and Pieter Lechner el Re

Downloaded from www.Apple2Online.com

Ba$g of Tricks

By Don Worth and Pieter Lechner

A product of
QUALITY SOFTWARE

6660 Reseda Bivd., Suite 105
Reseda, CA 91335

DISCLAIMER

Quality Software shall have no liability or responsibility to the
purchaser or any other person or entity with respect to any liability,
loss or damage caused or alleged to be caused directly or indirect-
ly by this product or its use, including but not limited to any in-
terruption in service, loss of business and anticipatory profits or
consequential damages resulting from the use of this product.

COPYRIGHT ©1982 BY QUALITY SOFTWARE
Bag of Tricks is published and copyrighted by Quality Software.
All rights are reserved by Quality Software. Copying, duplicating,
selling or otherwise distributing this product is hereby expressly
forbidden except by prior written consent of Quality Software.
The word APPLE and the Apple logo are registered trademarks
of APPLE COMPUTER, INC.

APPLE COMPUTER, INC. was not in any way involved in the
writing or other preparation of Bag of Tricks, nor were the facts
presented here reviewed for accuracy by that company. Use of the
term APPLE should not be construed to represent any endorse-
ment, official or otherwise, by APPLE COMPUTER, INC.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter §

TABLE OF CONTENTS

INTRODUCTION

LOADING THE BAG OF TRICKS DISKETTE
THE FOUR PROGRAMS AND WHAT THEY DO
MAKING A PRACTICE DISKETTE

TRAX - By Pieter Lechner

TRAX TUTORIAL

TRAX COMMANDS

TRAX MESSAGES

SUMMARY OF TRAX COMMANDS

INIT - By Pieter Lechner

A BRIEF INIT TUTORIAL

INIT OPTIONS

INIT MESSAGES

HOW SECTOR SKEWING CAN AFFECT
DISK PERFORMANCE

ZAP - By Don Worth

A BRIEF ZAP TUTORIAL

ZAP COMMANDS

ZAP ERROR MESSAGES

SUMMARY OF ZAP COMMANDS
ALPHABETICAL LISTING OF ZAP COMMANDS

FIXCAT - By Don Worth

FIXCAT TUTORIAL
FIXCAT MESSAGES

Chapter 6

Appendix

TABLE OF CONTENTS

ADVANCED TUTORIALS

IDENTIFYING AND CORRECTING FORMATTING
ERRORS

IMPROVING ACCESS TIME FOR DOS DISKETTES

CHANGING VOLUME NUMBERS

FINDING THE A AND L VALUES OF A
BINARY FILE

PATCHING DOS USING ZAP

EXAMINING/CHANGING BASIC'S RANDOM
TEXT FILES

RELEASING UNUSED SPACE IN FILES

SCANNING A DISK FOR I/O ERRORS

LOCATING AND FIXING AN I/O ERROR

COPYING PASCAL FILES TO DOS USING
ZAP MACROS

COMPARING FILES USING ZAP MACROS

PATCHING A MACHINE LANGUAGE PROGRAM
USING ZAP

RECOVERING LOST SECTORS IN THE VTOC
FREESPACE MAP

RECLAIMING TRACKS 1 AND 2 FOR
FILESPACE

A DOS-LESS BOOT PROGRAM

UN-DELETING A FILE

RECONSTRUCTING A BLOWN CATALOG

A DISCUSSION OF DISK 1/0 ERRORS

ACKNOWLEDGEMENTS

The concept for ZAP originated with a similar program written for
the IBM 360 by Vic Tolomei and myself almost ten years ago.
Thanks to Pete Nielsen, Lou Rivas, and Dave Robertson for their
suggestions, criticisms and product testing.

Don D. Worth

- My thanks to Greg Staie and Dave Garson for their assistance, and
a special thanks to Will Greaves, who developed the original idea for
TRAX. :
Pieter M. Lechner

CHAPTER 1
INTRODUCTION

Bag of Tricks is a collection of utility programs inspired by some
simpler programs provided in an appendix of our book, Beneath
Apple DOS. After the book was written we received many requests
for more complete programs for use in conjunction with the
information presented in Beneath Apple DOS. In answer to these
requests, we have developed four machine language utility programs
which encompass most of the functions needed by Apple I disk
owners for diskette manipulation as well as error detection and
recovery. Each of these programs includes features that are not
available in other disk utilities that are currently available for the
Apple 1I.

With Bag of Tricks our intent was to create powerful and easy to
use utilities of value to both the very technical user and the
average user. Our approach was to write programs we ourselves
wanted to use. During development we started by adding all the
features we needed and added all the features we imagined anyone
else might want. This approach has generally led to more
functional extensions than one might normally find in such
programs. It is hoped that beginners will not find this
intimidating. Every effort has been made to document the
programs carefully, providing many examples of their use, so that
expert and novice alike can profit from them.

LOADING THE BAG OF TRICKS DISKETTE

Bag of Tricks consists of four separate programs provided on a
single diskette. They each require a 48K APPLE II or APPLE. II
PLUS with at least one disk drive. A printer interface (in any
slot) is optional. Both 13 sector diskettes (DOS 3, DOS 3.1, DOS
3.2) and 16 sector diskettes (DOS 3.3, CP/M, and PASCAL) are
supported by most of the programs.

To load the Bag of Tricks diskette, merely insert it in drive 1 and
power the machine on (AUTOSTART ROM) or type PR#6 (if the disk
card is plugged into slot 6) from BASIC. After a moment you will
see a menu listing the four programs. Press the key that
corresponds to the first letter of the program that you wish to use.
A "LOADING" message will appear for a short time, then the
program you selected will become available.

CAUTION: The Bag of Tricks diskette cannot be copied and
attempting to write to the diskette will destroy the programs. Bag
of Tricks is provided on a high quality diskette that should give you
trouble free usage for many years. If the diskette should fail, it
will be replaced promptly by Quality Software. Simply return it to
Quality Software, 6660 Reseda Blvd., Suite 105, Reseda, CA 91335.
If you have owned the diskette for less than 90 days, include your
receipt and there will be no charge for replacement (only those
outside the continental United States need pay shipping). If you
have owned the diskette for more than 90 days, there is a nominal
charge of $5.00 plus shipping. Shipping charges for replacing a
diskette are the same as those for a back up copy and may be found
at the end of this chapter. California residents must add 6% sales
tax.

Bag of Tricks owners who feel they need an immediate back up
copy may purchase one for $5.00 plus shipping. Simply fill out and
send in the coupon at the end of this chapter along with payment
directly to Quality Software. Only one back up copy may be
ordered by each owner, and phone orders are not accepted.

THE FOUR PROGRAMS AND WHAT THEY DO

Although the four programs that comprise Bag of Tricks can often
be used together to perform some task, the purpose of each is quite
different and the prospective user need not feel that he must have
a use for all four programs, or all of the functions of any one. The
programs provided are briefly described as follows:

TRAX:

A track examination program. TRAX will read a track from a
diskette in its "raw" pre-nibbilized form and format it on the
screen, attempting to pick out the sector formatting. If the
diskette is non-standard in its formatting, such as a protected
diskette or one which has been damaged in some way, TRAX will
highlight its anomolies. TRAX is also useful in conjunction with
the INIT program to determine the physical order or skewing of
sectors on a diskette.

1-2

SNIDELY
DIsSKCRASH

YOU NEED NOT FEAR “SNIDELY DISKCRASH ¥

INIT: :

The INIT program can be used to reformat a single track on a
diskette, a range of tracks, or the entire diskette. In addition,
INIT will optionally attempt to preserve the contents of any
readable sectors it finds before reformatting. Thus, INIT can be
used to fix a single sector whose formatting has been damaged so
that it can no longer be read from or written to. This avoids
having to initialize the entire diskette with the DOS INIT
command. INIT will also allow you to specify the order of the
sectors on any given track. Doing this can improve disk read times
by about 40%.

ZAP:

ZAP in its simplest sense allows you to read and modify a diskette
at the track and sector level. A sector may be read and displayed
in hexadecimal and ASCII and, optionally, modified and rewritten to
the disk. ZAP provides over 50 commands, including some
programmability with maecros, labels, and loops, allowing you to
perform complex manipulations on diskettes. Full support exists
for DOS files of all types, CP/M files, and PASCAL files as well.
ZAP is perhaps the most complex of the four programs but you will
probably find you use it most heavily.

FIXCAT:

The FIXCAT program is an automated utility which allows you to
diagnose and correct errors in the catalog track of any DOS
diskette. In addition, it takes the Find Track/Sector lists program
(FTS) of Beneath Apple DOS a step further by actually recovering
lost files on a diskette automatically! FIXCAT will also allow you
to remove the DOS image from tracks 1 and 2 to provide more room
for files and will recover lost sectors by correcting the VTOC
freespace map.

It is the authors' belief that learning is best accomplished by
example. Therefore we have provided example sessions for each of
the four programs that comprise Bag of Tricks. In the next four
chapters each of the programs is covered separately, including both
a detailed description and a tutorial. The remainder of this book
(Chapter 6) is devoted to useful examples, some of which involve
more than one of the individual programs. The techniques provided
in Chapter 6 not only demonstrate Bag of Tricks but also should be
of value in fixing diskettes or patching DOS. We suggest that you
first read over the descriptions of each program and work through
the associated tutorials on your own Apple before attempting the
procedures covered in Chapter 6. However, a complete
understanding of each of the programs is not neccessary to
successfully use Chapter 6.

MAKING A PRACTICE DISKETTE

Most of the tutorials given are based on a "practice diskette".
Although any diskette can be used, it is recommended that you
construct a diskette using the following procedure. This way you
will see the same displays that are described in the tutorials and
you won't risk damage to one of your important diskettes.

To construct the practice diskette, put the Bag of Tricks diskette
aside and follow these simple steps:

STEP 1 - Boot DOS (DOS 3.3 if you have it) using your Master
Diskette
STEP 2 - Select APPLESOFT with the FP command
STEP 3 - Enter the following HELLO program:
NEW
10 END

STEP 4 - INIT a blank diskette as follows:
INIT HELLO,D1,V1
STEP 5 - BSAVE some memory to create a binary file:
BSAVE BINARY FILE,A$3D0,L$30
STEP 6 - Enter, save and run the followmg program:
NEW
10 D$="" (insert a CTRL D between the quotes)
20 PRINT:PRINT D$;"OPEN TEXT FILE"
30 PRINT D$;"WRITE TEXT FILE"
40 PRINT "1,2,3"
50 PRINT "4,5,6"
60 PRINT "7,8,9"
70 PRINT D$;"CLOSE TEXT FILE"
80 END
SAVE APPLESOFT PROGRAM
RUN

Set this practice diskette aside. As you work through the

tutorials, use this diskette whenever the text calls for the
"practice diskette".

1-5

TO GET A BACK UP COPY OF BAG OF TRICKS

Each Bag of Tricks owner has the option of purchasing one back
up diskette. If you wish to have a duplicate copy for
immediate back up, you must mail the coupon on the next page
directly to Quality Software along with payment of $5.00 and
shipping charges. The back up diskette is identical to the
original but does not include documentation.

1-6

SHIPPING CHARGES:

48 Continental United States (UPS)eeeceee$ 1.50
Alaska, Hawaii (air mail)eceeccessescecesed 5.00
Canada and Mexico (insured air mail).c...$ 6.00
Other countries (insured air mail)eeeceee$ 8.00

PAYMENT:
Make check or bank draft payable to Quality Software.

VISA or MASTERCARD users please specify expiration date.
No CODs. California residents must add 6% sales tax.

IMPORTANT :

When you send in the coupon below, please first tear this page
out of the book and do not remove the torn, perforated edge
from the side of the coupon. |If you send a copy of the coupon or

remove the perforated edge from the coupon, we will be unable
to process your order.

S0 000000 P 00000 0R00RR00000000CR0ER0E000ROR0RRRRPRROIETRIOSCOPRETROTOT

Please send me a back up copy of Bag of Tricks™
Name..oceeeeeoeeceecsesosccssasscscsosscscsssssscesascccncns
AdAreSSeececccccccsccecsecsoccssosscsssacsascssssssssssscasns
City,State,Postal Codecececcccccccscccoccccccccccscccnnns
COUNTTYceeeeeeecensccecacsssnncccsssssascscscscssssnsanss
Check NO. csceeceess OF

Bankcard #‘0!‘-l.to...-.--.-lnooc-..expirGSOUOOOOoouo.oot

mall to: QS QUALITY SOFTWARE

6660 Reseda Bivd.. Suite 105, Reseda, CA 91335
(213) 3446599

1-7

CHAPTER 2
TRAX — By Pieter Lechner

We have put TRAX first in the order of the Bag of Tricks programs
because it deals with the diskette at its most primitive level. The
fact is, however, that TRAX is the most technically challenging of
the four Bag of Tricks programs. Although it is not hard to use
TRAX, its applications are harder to appreciate, and we therefore
recommend that beginners become familiar with the other Bag of
Tricks programs, especially ZAP, before trying to use TRAX.

The purposes of TRAX are twofold. First, it provides you with the
ability to locate errors on a diskette rapidly and to determine the
extent of the damage. Second, TRAX provides you with the means
of examining how data actually appears on a diskette, which is
useful in better understanding DOS. While TRAX is designed to
operate on normal 13 or 16 sector diskettes, its data reading
technique allows it to read any diskette created on an Apple disk
drive.

Because some of you will no doubt use TRAX to look at a
"protected" diskette, a few things should be made clear. Dumping
an entire track of raw, unnibblized data into memory is relatively
simple (a short program to perform that task was included in our
book Beneath Apple DOS). Interpreting the raw data is a much
more complicated task. Interpretation becomes even more difficult
when very few assumptions can be made about the nature of the
data. This fact, along with our desire not to produce a means of
breaking disk protection schemes, led to the following decision.
TRAX assumes that the diskette being examined is a normally
formatted diskette that may have sustained some damage during
usage. It is possible to examine protected diskettes using TRAX, but
we are neither advocating nor supporting such usage.

Throughout this chapter we will use such terms as raw data and
nibblizing. If these terms are not at all familiar to you, we
recommend that you read Chapter 3 of our k, Beneath Apple
DOS, which is a fairly complete discussion of Apple Il diskette
formatting.

A brief explanation of how TRAX works is in order. Raw data is
read from the desired track one byte at a time and stored in
memory. Enough bytes are read to guarantee reading the track at
least three times. This allows TRAX, in most cases, to find at least
one good track image. The format of a track on a normal Apple
diskette is reasonably well defined, and is described in Figure 2.1.

GAP 1 GAP2 | DATAFIELD | GAPS GAP2 | DATAMELD | GAP3 GAP2 | DATARMELD | GAP3
FIELD FIELD AELD
o o n |- " ” 2
3 uﬁu“& 3 m\u\u
snoLoave omn | macx | secron '
voume | aconess | aconess ——_— prsdaiey .

WEX #F SYNC SVTES WEX PF SYNC BYTES Nax ¥ Svmc BvTES
TYRCALLY 6008 - TYPICALLY 810 TYPICALLY 1604

FIGURE 2.1 — TRACK FORMAT

TRAX attempts to identify the different segments of the track by
locating each gap (gap 1, gap 2, and gap 3 of Figure 2.1). This
technique, if successful, allows TRAX to recognize any abnormality
in either an address field or a data field. When all segments of the
track have been located, each is analyzed. The various address
fields are decoded and any deviation from the norm is indicated on
the screen. In its raw form, the address field appears like Figure
2.2.

PROLOGUE VOLUME TRACK SECTOR _ CHECKSUM EPILOGUE

IDS AA 96 IXX VYIXX YYIXX VYIXX YY'DE AA Eﬂl

ODD-EVEN ENCODED

DATA BYTE —D7DeDsD«D3D2D1Do
XX —1D71Ds1D3s1Dx
YY —1De1Ds1D21Do

FIGURE 2.2 — ADDRESS FIELD

2-2

Each of the data fields is also decoded, and any deviations from the
norm are indicated on the screen. In its raw form, the data field

appears like Figure 2.3.

DATA FIELD

PROLOGUE USER DATA CHECXSUM EPILOGUE

[os aa aD| 342 BYTES DATA | xx |DE AA EB]
e cem—

SIX AND TWO
ENCODED

FIGURE 2.3 — DATA FIELD

If the gaps cannot be found, secondary methods are used to
determine if any valid data exists on the track. If this also fails,
TRAX will display the message "UNABLE TO INTERPRET DATA"
on the screen. Some of the reasons that TRAX might fail to
interpret data are that the track has never been formatted, or the
track is so badly damaged that no recognizable portions remain.
While TRAX will not correctly diagnose every type of 1/0 error, it
will uncover formatting errors a high percentage of the time. In
addition, TRAX should prove to be informative to beginners and a
useful tool for experienced users.

A TRAX TUTORIAL

The following tutorial is provided to familiarize the first-time user
with the features and operation of TRAX.

After booting the Bag of Tricks diskette, select TRAX from the
menu. Then remove the Bag of Tricks diskette and insert the
practice diskette in your disk drive. Look at the top line of the
TRAX display screen. Included there is the track number, which is
currently 00. To read the indicated track number into memory,
press R on your keyboard. TRAX will begin reading track 0. While
it is working, TRAX will indicate the current operation being
performed, first reading the track, then analyzing the data, and
finally displaying the results. Your screen should be similar to the
center of Figure 2.4

2-3

2-4

ADDRESS FIELD

PROLOGUE VOLUME TRACK SECTOR CHECKSUM EPILOGUE

D5 AA96] XX XX XX XX |DE AA EB

W—/

TRAX SL=06 DR=01 TRACK=00 FORMAT=16
COMMAND:
ADDRESS FIELD DATA FIELD

PROLG VOL TRK SEC CHS EPILG PROLG EPILG

{DSARO6 FE 00 00 FE DEAA| DSAAAD DEAA

DSAA96 DEAA D5AAAD DEAA

D5AA96 FE 00 02 FC DEAA D5AAAD DEAA
D5AA96 FE 00 O3 FD DEAA DSAAAD DEAA
D5AA96 FE 00 04 FA DEAA DS5AAAD DEAA
D5AR96 FE 00 05 FB DEAA DSAAAD DEAA
D5AAR96 FE 00 06 F8 DEAA DSAAAD DEAA
D5AA96 FE 00 07 F9 DEAA DSAAAD DEAA
D5SAR96 FE 00 08 F6 DEAA DSAAAD DEAA
D5AA%6 FE 00 09 F7 DEAA DSAAAD DEAA
DSAR96 FE 00 OA F4 DEAA DSAAAD DEAA
D5AAR96 FE 00 OB F5 DEAA DSAAAD DEAA
D5AR96 FE 00 OC F2 DEAA DSAAAD DEAA
D5AA96 FE 00 OD F3 DEAA DSAAAD DEAA
D5AR96 FE 00 OE ‘

D5AA96 FE 00 OF

e,
PROLOGUE USER DATA CHECKSUM EPILOGUE

[Ds Aa aD| 342BYTES DATA | xx [DE AA EB]
DATA FIELD i

FIGURE 2.4 — ADDRESS AND DATA FIELD DISPLAY

As the figure indicates, most of the vital information used by DOS
to locate and read data is displayed for you by TRAX. It is
important that this information is correct, because if a single byte is
altered the entire sector is unreadable by DOS. The checksums
displayed at the bottom of the screen are not read from the diskette
but are actually the result of checksum computations. These
computations are performed on the appropriate data in a way similar
to the way that DOS performs them, and must provide a zero result
(00) for valid address and data fields.

Because you are using a normal, presumably undamaged diskette,
there should be no abnormalities displayed on the screen. If there
were you would hear a bell and the appropriate screen location
would be displayed in inverse. When an error occurs in a checksum
computation, and that error is the same for every sector on the
track (unlikely in normal usage), the erroneous value is displayed in
inverse. Should an error occur in one or more sectors, but not the
same error on every sector, a pair of inverse asterisks (**) is
displayed. In this case, you may access the actual checksum
computations with additional keypresses.

Now press the A key. The column in the middle of the display, the
one labeled CHS, will change to inverse and will display the address
field checksum computations for each sector. Each of these
checksums, which are computed by exclusive-ORing the four data
values in each address field, must be zero for a normal, undamaged
diskette. The screen can be returned to the normal display by
pressing the RETURN key.

Now press the D key. The column in the middle of the display will
again change to inverse, but this time it will display the results of
the data field checksum computations for each sector. Again, each
of these checksums must be zero for a normal, undamaged diskette.
Pressing RETURN will restore the screen to normal. For a detailed
explanation of the construction of address and data fields, see
Beneath Apple Dos (Chapter 3).

After restoring the screen to its initial display, press the X key.
This places you in the hex dump mode, where the raw dump of the
track is displayed. Figure 2.5 is a typical raw dump display, and
points out how address fields and data fields can be identified in the
raw data.

2-5

ADDRESS FIELD

IDS AA “IXX YYl XX VYlXX YYIXX YVIDE AA E;]

6510—1-'1-"FFFFFFFF

6518- B6 DB DC F4 F3 BB BD CF
6520- 97 9A AE AE 96 AD AC 9A
6528~ AB 97 B2 B2 AD AB 9A 9B
6530- AB 9F 97 B3 9A B3 9E 97
6538—- 9F B3 96 AC AE A7 9A EB
6540- ED CB E6 9B B2 A6 DC CF
6548- EE AC A7 E5 D7 9F A6 DC
6550- 97 BA F7 EA 9E AE 9E AE
6558- 9F 9B 97 9B B2 AF BC AE
6560~ AC 9A B3 B2 AC A7 AC 97
6568- AB AB BA F4 97 A6 DC E5
6570~ D6 FB ED F5 EF EC DA BD
6578- 96 96 96 B4 EF B5 EB DC

DATA FIELD

PROLOGUE USER DATA CHECKSUM EPILOGUE

D5 AA AD| 3428YTES DATA | xx |oE AA €8]
N —— —

SIX AND TWO
ENCODED

FIGURE 2.5 — RAW TRACK DUMP

While the raw track image is difficult to decode manually, it is
nevertheless informative and useful in viewing tracks that TRAX
was unable to interpret. TRAX stores the track image in a buffer in
memory starting at $6500 and ending at $7FFF. The end of the
buffer is padded with FF's to insure consistency for different size
track images.

TRAX allows you to move freely through the track image. The
arrow keys will seroll one line at a time. The left arrow scrolls one
line backward in the buffer, and the right arrow scrolls one line
forward. It is impossible to scroll past either the start or end of the
buffer, and any attempt to do so will be disregarded. To scroll
forward one full screen (80 Hex Bytes), press the N key (for Next).
To scroll backward one full screen, press the P key (for Previous).
You may also move to the beginning of the buffer by pressing B and
to the end of the buffer by pressing E. Experiment briefly to get a
feel for how to move about within the buffer. When you are done,
press B to go to the beginning of the buffer.

TRAX also allows you to search for a particular byte. This is done
with the L key. Notice the top of the display identifies the current
search byte as D5. This is the default value, because D5 is the byte
which normally begins all address and data fields. Each time you
press the L key the next D5 in the track image will move to the top
line on the screen. In this manner you can very rapidly locate and
examine all address and data fields in the buffer. If you wish, you
may change the search byte by pressing C. A cursor will appear
appear on the value of the current search byte (the D5 at the end of
the command line), allowing you to enter any valid byte (80-FF Hex).
Experiment with.other values for search byte, then exit the raw
dump mode by pressing the X key. You will be returned to the
address and data field display (the analysis mode).

When you are using TRAX to analyze diskettes, you should keep in
mind that the sector order in the address and data field display is
the same as the order of the data in the raw data buffer. This fact
will, in many cases, help you determine what portion of a damaged
diskette has been damaged. Thus, it is not uncommon in an analysis
session to find yourself switching in and out of the raw data mode.

Another point to keep in mind is that the sector numbers on the
TRAX display are the actual numbers on the diskette, which we
refer to in Chapter 2 as the physical sector numbers. The logical
sector numbers, which are referred to by the DOS file manager, are
always different in DOS 3.3.

Just as you can move around within a raw track buffer when in the
raw dump mode, you can also move across the diskette when in the
analysis mode, choosing any track that you wish to examine. Press
the N key to access the Next track. This is like pressing R except
that the track indicator is incremented before the read is
performed. When the read is complete, you will see that the track
number is now 1.

To access the Previous track, press the P key. If you do this you
will find that you are back to track 0.

To select a particular track, the arrow keys are used. For example,
select track 11 (Hex) by repeatedly pressing the right arrow key.
The track number at the top of the screen will increase by one with
each keypress. Stop when it reaches the value 11. You should have
noticed that when you first changed the track number, it was no
longer displayed in inverse. This is to indicate that the current
display does not correspond with the track indicator. If you change
the track indicator back to what it was originally, it would again be
displayed in inverse.

Having selected track 11, press the R key to read, analyze, and
display the results. The display should be similar to the earlier
tracks you looked at, with only the track number and checksum
bytes changing at all. In fact on normal undamaged diskettes there
should be little difference between individual tracks.

As you can see, it is simple to check a particular track that you
suspect of having an 1/O Error. Often, however, you may not know
where the error is located, only that it exists. TRAX can very
quickly locate abnormalities on a diskette. The following exercise
shows how you verify that a diskette is free of formatting errors.

Press the 0 on your keyboard, this will recalibrate the disk arm and
read track 0. Now simply press V to verify the diskette. TRAX
will verify that all sectors are readable, starting with the next
track. If any sector can't be read, TRAX
will dump that entire track, analyze the
data found and display the results. To
continue the verification process simply
press V again. No errors should be found on

— —F
TRAX HELPS YOU TRACK DOWN

2-8

the diskette you are using for this tutorial, and you should see a
message indicating that the verification process has been completed.

This ends the TRAX tutorial. A thorough discussion of each of the
TRAX commands follows.

TRAX COMMANDS

There are two sets of TRAX commands. The first set is available
when the address and data field display is on the screen. We refer
to this as the analysis mode. The second set is available when the
raw track dump is on the screen. We refer to this as the raw dump
mode.

ANALYSIS MODE COMMANDS

ARROW KEYS

In the analysis mode, the arrow keys are used to select the track
number to read. The right arrow key will increment the current
track indicator and the left arrow will decrement the track number.
If the track number is displayed in inverse, this indicates that the
data on the screen refers to that track. If the track number is not
displayed in inverse, the screen data does not correspond to the
indicated track number. '

R

Read the track indicated by the track
number displayed at the top of the screen,
analyze the data, and display the results.

— _(—(< ¥ ¢ —&
THE SOURCE OF DISK ERRORS

2-9

N

Read the next track (i.e. the current track indicated plus one),
analyze the data, and display the results. The wraparound feature
causes track 00 (Hex 00) to be read after track 34 (22 Hex).

P

Read the previous track (i.e. the current track indicated less one),
analyze the data, and display the results. The wraparound feature
causes track 34 (22 Hex) to be read after track 00 (Hex 00).

F

Toggle between 13 and 16 sector formats. While TRAX will in many
cases identify the format of a particular diskette, the user must
change the format setting manually.

A

Verify the diskette starting at the next track and continuing through
track 34 (Hex 22). Any abnormalities are displayed, stopping the
verification process. The verification process may be continued by

~ pressing V again.

A

Display the result of the checksum computations for the address
fields of each sector. The results are shown in the center column of
the display and are normally zero. The computation consists of
exclusive ORing the four values in the address field. After this
command has been used, pressing RETURN will return the screen to

its normal display.

2-10

D

Display the result of the checksum computations for the data fields
of each sector. The results are shown in the middle column of the
display and are normally zero. The computation, described in
detail in our book Beneath Apple DOS, essentially involves exclusive
ORing the values in the data field. After this command has been
used, pressing RETURN will return the screen to its normal display.

0

Force recalibration of the disk arm followed by a read, analysis, and
display of track 0.

S

Allows the selection of a different SLOT and DRIVE configuration.
After pressing S, the word SLOT will flash on the command line.
The arrow keys may be used to select any slot that contains a Disk II
compatible controller card. Press RETURN when the SLOT
selection is made. The word DRIVE will then appear on the
command line, and you may select either drive 1 or drive 2 using the
arrow keys. Press RETURN to complete the selection process.

X

Exit the analysis mode and enter the raw dump mode, which displays
the raw hex dump of the current track.

ESCAPE

Exit the TRAX program and return to the Bag of Tricks main menu.
The Bag of Tricks diskette should be in drive 1 of the selected slot.
An option to return to the program is offered to prevent the user
from accidentally exiting.

2-11

RAW DUMP COMMANDS

RIGHT ARROW

Seroll forward one line (eight hex bytes) in the hex display of the
track.

LEFT ARROW

Seroll backward one line (eight hex bytes) in the hex display of the
track.

N

Scroll forward one page (80 hex bytes) in the hex display of the
track.

P

Scroll backward one page (80 hex bytes) in the hex display of the
track.

B

Go to the begining of the track dump buffer.

E

Go to the end of the track dump buffer.

C

Change the current search byte, the value for which is displayed on
the right side of the command line. Enter any valid byte (80-FF
Hex) and press the RETURN key. Pressing RETURN after typing C
leaves the value of the search byte unchanged.

2-12

L

Starting with the second line on the screen, look for the current
search byte (default D5) displayed on the right side of the command
line. If found, the desired byte will be displayed on the top line of
the raw hex dump. If the search is unsuccessful, an error message

appears.

X

Exit the raw dump mode and return to the analysis mode, which
redisplays the address and data field information.

TRAX MESSAGES

Although TRAX is accurate in most cases, some unforeseen types of
I/O errors may occur that will not be correctly interpreted. TRAX is
meant to be a tool in aiding the user to determine the nature and
location of damaged areas of a diskette, but we do not guarantee
that TRAX can uncover every possible type of diskette error.

READING DATA

This message is displayed when the disk drive is working. The drive
will be turned on and a brief delay will occur to allow the motor to
come up to speed. Then the track is dumped into a large buffer area
one byte at a time.

ANALYZING DATA
A track has been read in and now TRAX is attempting to determine

if any part of the track has been damaged. When the analysis is
complete, the results are displayed on the address and data field

display.

2-13

VERIFYING DISKETTE

This indicates that tracks are being verified to insure that all
sectors on those tracks are readable. If an abnormality is found,
TRAX will stop the verification process and display the analysis of
the track in question.

VERIFICATION COMPLETE

This indicates that you are using the V command and you have
reached the end of the diskette. No abnormalities were found on
the diskette between the track where the V command was entered
and the end of the diskette.

APPEARS TO BE 13 SECTOR FORMAT

This message will probably occur if Format is set to 16 and a 13
sector disk is used. In the case of certain damaged diskettes, TRAX
might not be able to distinguish between 13 and 16 sector formats.

APPEARS TO BE 16 SECTOR FORMAT

This message will probably occur if Format is set to 13 and a 16
sector disk is used. In the case of certain damaged diskettes, TRAX
might not be able to distinguish between 13 and 16 sector formats.

UNABLE TO INTERPRET DATA

TRAX has been unable to find any valid data on the track. In the
case of a normal diskette, this is a strong indication that no
recoverable data remains. In the case of a "protected" diskette this
simply indicates that the format being used is different enough from
a normal diskette that TRAX does not recognize it.

UPDATED
This prompt will be displayed to indicate that a 13 sector diskette
has been updated to contain a sector written in 16 sector format.

This is commonly done to allow a diskette to boot on a disk
controller card equipped with either a 13 sector or 16 sector prom.

2-14

NO DATA

This will generally only be dis-
played on 13 sector diskettes
indicating a sector that has no
data field. (The DOS initiali-
zation process for 13 sector
diskettes never writes the data
field, whereas a zeroed data
field is written for 16 sector dis-
kettes.) It is possible for a data
field to be damaged in such a
way that the data field cannot
be found, in which case it is
probably not recoverable.

DAMAGED

This indicates that TRAX could
not find enough of an address or
data field (in some cases both) to
make a meaningful display. This
generally indicates that the par-
ticular data is not recoverable.

BYTE NOT FOUND

A search, using the L command
in the raw dump mode, has
failed. The search byte was not
found between the current buf-
fer location and the end of the
buffer.

TOP OF BUFFER

An attempt has been made to
move backward in the raw dump
buffer and the top of the buffer
has been reached.

TRAX ALLOWS YOU TO
INSPECT DISKETTES FOR
NON-STANDARD FORMATTING

2-15

END OF BUFFER

An attempt has been made to move forward in the raw dump buffer
and the bottom of the buffer has been reached.

SUMMARY OF TRAX COMMANDS

ANALYSIS MODE COMMANDS

ARR(}W KEYS SELECT TRACK TO READ

READ CURRENT TRACK

READ NEXT TRACK

READ PREVIOUS TRACK

TOGGLE DISK FORMAT (13 OR 16 SECS)
VERIFY DISK AND DISPLAY ERRORS
DISPLAY ADDRESS CHECKSUMS
DISPLAY DATA CHECKSUMS
RECALIBRATE AND READ TRACK 0
CHANGE SLOT/DRIVE CONFIGURATION
ENTER RAW DUMP MODE

SC key EXIT PROGRAM

(XA eT><mTZD

[0}

RAW DUMP COMMANDS

RIGHT ARROW SCROLL FORWARD ONE LINE
LEFT ARROW SCROLL BACK ONE LINE
SCROLL TO NEXT PAGE
SCROLL TO PREVIOUS PAGE
GO TO BEGINNING OF BUFFER
GO TO END OF BUFFER
CHANGE SEARCH BYTE

LOOK FOR SEARCH BYTE
RETURN TO ANALYSIS MODE

HooQmwwo'Z

2-16

CHAPTER 3
INIT — By Pieter Lechner

The INIT utility allows you to format a range of tracks on a diskette
— from a single track to an entire diskette. Both 13 and 16 sector
formats are supported. Additional options include the ability to
preserve any readable sectors on a track, allowing you to reformat a
damaged track without affecting the rest of the diskette. INIT was,
in fact, originally developed to perform this latter funection, but it
can provide a much broader range of uses as well. The most
important is its ability to choose the order in which sectors appear
on the track. This subject is covered in detail later in this chapter,
under the heading HOW SECTOR SKEWING CAN AFFECT DISK
PERFORMANCE. By selecting the appropriate skewing you can
greatly improve the speed with which DOS accesses files, especially
when reading programs from diskette into memory. INIT allows you
to update your diskettes, changing only the skewing, thereby
speeding most reads from the diskette.

A BRIEF INIT TUTORIAL

The following tutorial will serve to introduce you to INIT's features.
Boot up the Bag of Tricks diskette, invoke INIT, and follow along
with the tutorial.

Upon entry to INIT you will see a screen that looks like Figure 3.1.

* * INIT * *

DISK SECTORING >16

DISK FORMAT DOS
PRESERVE DATA YES
SKEW DIRECTION DESCENDING
SKEW FACTOR 02
SLOT 06
DRIVE 01
VOLUME NUMBER DEFAULT
STARTING TRACK O00-DEC OO-HEX
ENDING TRACK 34-DEC 22-HEX

* SPACE BAR MOVES CURSOR *
* ARROW KEYS CHANGE VALUES *
* RETURN CONCLUDES DATA ENTRY *
* ESCAPE EXITS PROGRAM *

FIGURE 3.1 — ORIGINAL INIT SCREEN

During this tutorial you will use INIT to format an entire diskette, so
at this point remove the Bag of Tricks diskette and place a blank
diskette in your disk drive. If you have two disk drives you may use
either drive. You will notice a small arrow (>) following the words
DISK SECTORING and just in front of the value 16. This is the
cursor, indicating the line on which you may enter data. Press the
space bar and you will see that the cursor has moved to the second
line, containing the words DISK FORMAT. The space bar is the
means by which you may position the cursor to any input parameter
line on the screen. If you continue pressing the space bar you will
be able to move the cursor until it is back in its original position.
Please do that now. Your screen should now be identical to Figure
3.1 above. If it is not, please continue pressing the space bar until
it is.

Since data to be input to INIT is well defined, it was possible to
eliminate the need for you to type out any of the input parameters.
Instead, all possible options may be selected by simply using the
right and left arrow keys (—> and <—). If you now press the right
arrow key, you will see the DISK SECTORING value, 16, change to
13. Since there are only two possible inputs for this line, either

3-2

arrow key will change the value displayed. Please select the
appropriate value for your system. This tutorial will assume that
you are using DOS 3.3 (16 sector format) although any differences
for DOS 3.2 (13 sector format) will be noted. When you have
selected the number of sectors you wish to use, press the space bar
to move to the next line. The cursor should now be in front of the
DISK FORMAT default, DOS, which is the value we will use in this
example. You may wish to see what other options are available by
using the arrow keys at this time. When you are ready to continue,
make sure the word DOS appears and then press the space bar to
move on to the next line.

You are now on the line labeled PRESERVE DATA and the cursor
should be in front of the default, YES. Since we are formatting a
blank diskette, there is no need to try to preserve any data, so, using
either arrow key, select the value NO. (It should be noted that it is
possible to format a blank diskette by answering YES to this
question but it would take considerably longer than necessary since
the program must search for data on every track. If any data is
found it will be preserved, thereby producing a copy rather than a
freshly formatted diskette.) Making sure that you have selected the
value NO, you may move to the next line using the space bar.

The cursor should now be in front of the word DESCENDING on the
line reading SKEW DIRECTION. This is the value we want to use
for this example so we can move on to the next line. Press the
space bar once to move to the next line. The cursor is now in front
of the value 2. This is the skew factor for a normal DOS 3.3
diskette. On the other hand, a skew factor of 9 is the optimal skew
factor for most disk LOAD or BLOAD operations, so we will use 9.
The right arrow key increments the value and the left arrow key
decrements it. A wrap around feature is built in so that a value
may be selected using either arrow key. Press either arrow key
until the value 9 appears. Then press the space bar to move to the
next line.

You will now select the SLOT number of your disk controller card,
usually slot 6. When you have made your selection, press the space
bar to move on to DRIVE information. Select the drive number (1
or 2) and continue by pressing the space bar again. You will now
select VOLUME number. Leaving the current value of DEFAULT
will result in the volume number 254 ($FE in hexadecimal). This is
the value DOS uses if you INIT a diskette without specifying a
volume number. You may select any volume number you wish, then
move on to the next line.

3-3

The cursor should be at the line labeled STARTING TRACK. The
value of 00 now appearing there is correct, so you may continue by
using the space bar again. The last line for data input, ENDING
TRACK, also has the correct value (34), so you are now done
entering data. You may press the RETURN key indicating that all
data entry is finished. You will see the cursor on the line asking the
question "IS THE ABOVE OK ?" followed by the answer YES. Check
carefully to make sure all the questions have been answered
correctly. At this point your screen might look like this:

* * INIT * *

DISK SECTORING 16
DISK FORMAT DOS
PRESERVE DATA NO
SKEW DIRECTION DESCENDING
SKEW FACTOR = 09
SIOT 06
DRIVE O1
VOLUME NUMBER DEFAULT
STARTING TRACK 00-DEC O0O0-HEX
ENDING TRACK 34-DEC 22-HEX

IS THE ABOVE OK ? >YES

* SPACE BAR MOVES CURSOR *
* ARROW KEYS CHANGE VALUES *
* RETURN CONCLUDES DATA ENTRY *
* ESCAPE EXITS PROGRAM *

FIGURE 3.2 — INIT SCREEN WHEN READY TO WRITE

If you discover an incorrect entry, use an arrow key to change the
YES value to NO and press the RETURN key. You will find the
cursor at the top line. Using the space bar, move the cursor to the
line containing the incorrect value and change it using the arrow
keys. Even if you have not made any mistakes you may wish to try
this to see how easily errors can be corrected. When your screen
matches that of Figure 3.2, simply press the RETURN key. You will
once again see the question "IS THE ABOVE OK ?" followed by the
answer YES. This time press the RETURN key to indicate that the
above data is indeed correct.

34

Next you will see a four line prompt:

EXISTING DATA WILL BE OVERWRITTEN

INSERT DISKETTE IN DRIVE 01 SLOT 06
PRESS RETURN TO CONTINUE
PRESS ESCAPE TO ABORT

After making sure the blank diskette is in the slot and drive
indicated and that the drive door is closed, you may press the
RETURN key to begin formatting. Should you discover an error at
this point, you may use the ESC key to abort. You would be
returned to the top of the screen at which time you could make
corrections. You will hear the disk arm recalibrate the same way it
does when you perform a normal DOS "INIT" command. Shortly
thereafter you will see a prompt line indicating the number of the
track being initialized. The whole procedure should take less than
25 seconds, at which time you will have a formatted diskette. This
diskette does not contain a DOS boot image, as would a diskette
initialized normally, nor does it contain any programs (HELLO or
otherwise). The VTOC (Volume Table of Contents) has been
modified to allow data to be stored on tracks 1 and 2 (normally
reserved for the DOS boot image) thereby providing 32 extra
sectors. You may, of course, place DOS on the diskette using the
appropriate program on your System master diskette (such as
MASTER CREATE). If you do this, be sure to use the FIXCAT
utility (Chapter 5) to mark tracks 1 and 2 of the diskette in use.

When the formatting is complete, you should see the prompt line
"EXIT PROGRAM?". This concludes the INIT tutorial so you may
select your answer (using the arrow keys) and then press RETURN.

INIT OPTIONS

DISK SECTORING This value is the number of sectors per track.
The options are 13 or 16. A 16 sector
selection will not work if you have an old disk
drive which has not been updated for 16
sectors per track (the P6A ROM must be
installed on the controller card).

35

DISK FORMAT

PRESERVE DATA

SKEW DIRECTION

This is the type of operating system being used
on this diskette. For 13 sectors both DOS and
CP/M are available. For 16 sector diskettes
DOS, CP/M and PASCAL are available (the
PASCAL option works for APPLE FORTRAN).
Our purpose in supporting PASCAL and CP/M
in INIT was primarily intended to provide the
ability to reinitialize a track which might have
one or more errors in it. While it is possible
to initialize an entire diskette without pre-
serving data using the standard PASCAL or
CP/M skewing, the resulting diskette may be
missing special formatting required by the
operating system. Therefore we do not re-
commend using INIT to initialize diskettes for
either PASCAL or CP/M.

This question asks whether the data currently
on your diskette should be preserved. The
options are YES or NO. If you answer YES,
each sector on a track will be read into
memory, the track will be reformatted, the
original data rewritten to the track. Note
that this constitutes an "INIT in place" and can
result in the loss of an entire track's worth of
data if your diskette is physically damaged and
cannot be reformatted. For this reason, we
recommend that you make a backup before
using INIT to preserve data; see the Appendix
to this manual. If you answer NO, existing
data on the diskette will not be preserved and
zeros will be written to each newly formatted
sector.

This prompt indicates the direction of the
skewing to be used. The options are ASCEN-
DING and DESCENDING. Ordinarily, DOS
reads sectors in DESCENDING order while
CP/M and PASCAL read them in ASCENDING
order.

SPECIFYING SECTOR ORDER

SKEW FACTOR

SLOT

DRIVE

VOLUME NUMBER

This is the spacing placed between logically
sequential sectors during formatting. For 13
sector diskettes the values 1-12 are available
and for 16 sectors the values 1-15. Standard
DOS diskettes are skewed with 2 DESCEN-
DING. See the section, HOW SECTOR SKEW-
ING CAN AFFECT DISK PERFORMANCE for
more details on this option.

The number of the slot occupied by your Disk
I disk drive controller card. Slots 1, 2, 3, 4,
5, 6, and 7 are supported.

The drive number of your disk drive. The
options are 1 or 2.

This is the volume number that will be used to
format your diskette. The numbers 0-254
($00-$FE Hex) are available. Additionally a
DEFAULT option is available which will use
the current volume number of your diskette.
If none is found or you are not preserving data,
the value 254 ($FE Hex) will be used.

3-7

STARTING TRACK The track number upon which formatting is to
start. The options are 0-34 ($00-$22 Hex).

ENDING TRACK The last track to be formatted. The options
are 0-34 ($00-$22 Hex). This value must be
greater than or equal to the value for
STARTING TRACK.

INIT MESSAGES

* SPACE BAR MOVES CURSOR *

The space bar is used to move the cursor (>) to the next line. The
cursor wraps around, allowing you to return to the top line.

* ARROW KEYS CHANGE VALUES *

The arrow keys (€— and —>) are used to change data values. A
wrap around feature allows all possible values to be accessed with
either arrow key.

* RETURN CONCLUDES DATA ENTRY *

The return key indicates that data entry has been concluded. Press
RETURN when you are sure that all the entries have been set to the
correct values for the particular task you are performing.

* ESCAPE EXITS PROGRAM *

The escape key (ESC) allows you to exit the program. As a
safeguard against hitting escape accidentally, you will see the
message EXIT PROGRAM ? > YES. If you do not wish to exit the
program change the answer to NO with either arrow key and press
RETURN. Otherwise simply press RETURN and you will be
returned to the Bag of Tricks main menu.

3-8

IS THE ABOVE OK ?

This prompt asks whether the information in the data entry area is
correct. The options are YES and NO. NO will return the cursor to
the top line of the screen so that the data can be modified. YES
causes the program to proceed using the input parameters as they
appear on the screen.

EXIT PROGRAM ?

This prompt asks whether you wish to return to the Bag of Tricks
main menu or remain in INIT. The options are YES and NO. YES
will return you to the initial menu allowing you to select another
Bag of Trieks program. NO will rerun the INIT program so that you
may continue formatting diskettes.

EXISTING DATA WILL BE OVERWRITTEN
INSERT DISKETTE IN DRIVE XX SLOT XX
PRESS RETURN TO PROCEED

PRESS ESCAPE TO ABORT

This series of messages occurs when you are initializing a diskette
without preserving data. The message indicates which slot and
drive are to be used. Any data now existing on the indicated diskette
will be lost. The return key will start the initialization process.
The escape key allows you to abort the process and return to the
data entry area.

DATA WILL BE PRESERVED

INSERT DISKETTE IN DRIVE XX SLOT XX
PRESS RETURN TO PROCEED

PRESS ESCAPE TO ABORT

This series of messages occurs when you are preserving data on a
diskette while reformatting one or more tracks. Any data found on
the diskette will be written back after each track has been
initialized. The return key will start the reinitialization process.
The escape key allows you to abort the process and return to the
data entry area.

3-9

INITIALIZING TRACK XX-DEC XX-HEX

During initialization this message indicates the track currently being
formatted.

BUILDING CATALOG 17-DEC 11-HEX

This message occurs only when formatting track 17 ($11 Hex) during
an initialization employing DOS format. Both an empty catalog and
a VTOC (Volume Table of Contents) are constructed at this time.
INIT assumes that no DOS boot image is placed on the diskette, and
the new VTOC is marked to indicate this.

READING TRACK XX-DEC XX-HEX

This message occurs when INIT is reading data from the indicated
track. Any valid sectors found will be stored in a buffer area for
later rewrite to the newly formatted track.

WRITING TRACK XX-DEC XX-HEX

This message occurs when INIT is writing data to the indicated
track. After first reformatting the track, the data previously
stored in the buffer area is written back to the diskette.

* * DISKETTE WRITE PROTECTED * *
CTRL-P TO PROCEED
CTRL-A TO ABORT

This series of messages indicates that the write protect switch in
your disk drive is closed. Most likely this means that the notch on
your diskette has been covered. You must remove the write protect
tab from your diskette if you wish to write to it.

* * XX OF XX SECTORS UNREADABLE * *
CTRL-P TO PROCEED, IGNORE READ ERRORS
CTRL-A TO ABORT

This series of messages tells you how many sectors could not be
preserved on the indicated track. If you press CTRL-P to proceed,
the unreadable sectors will be replaced with zeroed sectors on the
newly formatted track.

3-10

* * UNABLE TO FORMAT * *
CTRL-P TO PROCEED
CTRL-A TO ABORT

This series of messages usually indicates that there is something
physically wrong with the diskette itself. Check to make sure that
there is actually a diskette in the appropriate disk drive and that the
drive door is closed. If this message appears while data is being
preserved, any data in INIT's buffer (preserved sectors from the
damaged track) has been lost. To avoid this possibility it is
recommended that you first make a backup copy of a suspected
damaged diskette before attempting to fix the diskette using INIT.
See the Appendix of this manual for a method of backing up

damaged diskettes.

HOW SECTOR SKEWING CAN AFFECT DISK PERFORMANCE

Sector skewing, or interleaving, is a method by which the time
required to access a diskette sector can be reduced. Whenever you
initialize a diskette, either by using the DOS INIT command or by
using the COPY program to create a new diskette, DOS formats
each track by arranging the sectors in a "physical" order. Each
physical sector number is written in the Sector Address Field (see
Beneath Apple DOS, Chapter 3). In DOS 3.3 this order is sequential,
from physical sector zero to physical sector fifteen. When DOS 3.3
reads a sector it translates the "physical sector number" into a
"ogical sector number" using .a soft skewing table, located in the
Read/Write Track/Sector portion of DOS. Most programs and the
DOS file manager refer to sectors by their logical sector number.
When DOS 3.3 was written, the soft skewing table was established so
that the logical order in which sectors were arranged on a track
could be controlled merely by modifying the soft skew table. (Earlier
versions of DOS set up sector skewing when the physical sectors
were placed on the diskette at INIT or COPY time — in fact, under
DOS 3.2 and DOS 3.1, INIT and COPY each used a different skew
pattern!) A diagram of the process used by DOS 3.3 to reference
sectors is shown in Figure 3.3.

Why is sector skewing important? To understand skewing it is
enlightening to look at the series of events which occur whenever a
sector is read from or written to the diskette. Figures 3.4 through
3.6 will be used to describe what happens when a program is read
from a standard DOS diskette. To simplify this discussion, these
three figures will show the logical sector numbers on the "diskette".
In actual fact, the physical order is that of Figure 3.3.

3-11

¢ ¢
1 7
PHYsICAL | 2 E
SECTOR| 3 6
a4 4—D
5 5
4 6 C
2 : ; LOGICAL
READ s 3 SECTOR
\ 3 | WRITE P D
HEAD
B 2
c 9
D 1
E 8
F F
SOFT
SKEW
TABLE

FIGURE 3.3 — PHYSICAL SECTOR ORDER

Shown in Figure 3.4 is the standard skewing for DOS 3.3. There are
different skews for PASCAL/FORTRAN and CP/M. The reason for
this should become apparent as this discussion proceeds. When DOS
3.3 was designed, a skewing was chosen that optimizes access during
booting. Since sector reads occur fairly rapidly during the boot
process and sectors are read in reverse order (sector F first, then E,
then D, etec.), a "2 DESCENDING" skew was chosen. This means
that the next lower sector is (nearly) always two sectors away from
the last one. For example, sector 6 is two sectors beyond sector 7.
Although this standard DOS skewing allows disks to boot in at
optimal speed, it turns out to be a very poor skewing for doi
almost anything else, like loading or running programs (BLOAD,
LOAD, BRUN, RUN).

3-12

READ/WRITE HEAD

DOS 3.3
“LOGICAL”
SECTOR
NUMBERS

FIGURE 3.4 — LOGICAL SECTOR ORDER, STANDARD DOS 3.3

Referring again to Figure 3.4, notice that the read/write head is
positioned where it would be immediately after reading Sector F. At
this point, control returns from RWTS and the file manager
processes the data it has just read, determines which sector must be
read next, and calls RWTS again. At the same time all of this is
going on the diskette continues to spin in the drive. Thus, several
sectors pass beneath the read/write head before the file manager is
ready to request another read. In the usual case, the file manager
will want to read the next lowest numbered sector on the track
(sector E, in this case), and this sector will be one of those which has
already passed by. Figure 3.5 shows the position of the diskette
relative to the read/write head when the file manager is ready to
read sector E.

Notice that one of the "passed over" sectors was, in fact, sector E.
RWTS will now read each sector on the diskette until it again finds
sector E. The period of time it takes to find the desired sector after
the read has been requested is referred to here as the "rotational
delay" for the disk access. Figure 3.6 shows the read/write head in
position to read sector E and identifies the rotational delay. This
delay is wasted time.

3-13

<«— READ/WRITE HEAD

AT NEXT CALL TO RWTS
TO READ SECTORE
BY

PASSED
WHILE DOS WAS
PROCESSING SECTOR F

FIGURE 3.5 — STANDARD DISKETTE POSITION AFTER PROCESSING SECTOR F

READ/WRITE HEAD

READY TO READ
SECTORE

FIGURE 3.6 — STANDARD DISKETTE POSITION AFTER ROTATIONAL DELAY

3-14

You may have noticed that, had the file manager processed sector F
faster, letting only one sector pass by in the meantime, it could have
returned to the disk in time to read sector E as it passed under the
read/write head. This is apparently what the DOS designers intended
and, in fact, this is what occurs during the boot process. The
example given above, however, was for a BLOAD operation (BLOAD,
LOAD, BRUN, and RUN have similar patterns of behavior, using
identical code within DOS).

Obviously, unless you spend a lot of time booting disks, it would be
nice to reduce the rotational delay for other operations as well.
One solution would be to change the soft skew table in RWTS to a
more appropriate pattern. This works but has two major disad-
vantages. One disadvantage is that once this table is changed, any
diskette created using the standard skew table is not accessible
using the modified soft skew table, and vice versa. For example,
what standard DOS thinks is sector 7, the modified DOS may think is
sector 5. A second disadvantage is that this scheme applies to every
track on the diskette, including the boot image of DOS on tracks 0,
1, and 2, making a BLOAD command run faster at the expense of the
time to boot the disk.

Luckily, there is another way to deal with the problem. Instead of
changing the soft skew table, the sectors can be physically
rearranged on the track such that, when run through DOS's boot-
optimized skew table, they will be in the optimal pattern for LOAD
and BLOAD. And it is possible to have different physical
arrangements on different tracks. Thus, tracks 3 through 34 can be
optimized for LOADing while the boot tracks are optimized for
booting. Also, disks created in this way may be read by any DOS (of
the appropriate version).

It turns out that during a BLOAD operation the file manager is "out
to lunch" processing the previously read sector for about the time it
takes eight sectors to pass beneath the read/write head. Thus a "9
DESCENDING" skew seems a good choice (9 DESCENDING provides
eight sectors of padding between descending sequential sectors).
Figure 3.7 shows the logical arrangement of sectors on the diskette
‘when a 9 DESCENDING skew is used.

Using this new skewing, after the file manager has finished
processing sector F, the read/write head is positioned very near to
sector E. Figure 3.8 shows the position of the diskette at this time.

The actual rotational delay is less than one sector long, as shown in
Figure 3.9.

3-15

READ/WRITE HEAD

AFTER READING SECTOR F

<«—READ/WRITE HEAD

AT NEXT CALL TO RWTS
TO READ SECTORE

FIGURE 3.8 — 9 DESCENDING SKEW AFTER PROCESSING SECTOR F

3-16

READ/WRITE HEAD

\"ROTATIONAL DELAY”

READY TO READ
SECTORE

FIGURE 3.9 — 9 DESCENDING SKEW AFTER ROTATIONAL DELAY

One might ask just how significant a contribution rotational delay
makes to the overall access time of a disk sector. Within about a
ten percent tolerance, a DISK II spins at 300 revolutions per minute.
This means that every sector on the track passes beneath the
read/write head 300 times per minute. If rotational delay amounts
to waiting for ten sectors to go by before reading the desired sector,
as in the standard DOS skewing with BLOAD, and 16 sectors are
read on every track, the time wasted per track amounts to:

1 _min x 60_sec x 10 lost sectors x 16 reads x 1 _rev
300 re min read track 16 sector

= 2 lost seconds per track

This value is theoretical and is not completely accurate, since
rotational delay varies depending upon factors such as random
placement after moving to a new track, variations in DOS response,
.ete. However, experimental measurements have shown it to be
within 10 per cent of the actual delay in most situations. If an
Applesoft program which is stored in 64 sectors on the diskette is
loaded, this rotational delay amounts to eight seconds. With the 9
DESCENDING skew this delay is reduced to less than half a second!

3-17

8.3 SECONDS

15.3 SECONDS

FILE MANAGER
OVERHEAD

ROTATIONAL DELAY
(VARIABLE)

MOTOR
E

RWTS

READ

MOTOR — Delay waiting for disk motor to come up to speed
SEEK — Time spent moving disk arm from track to track
RWTS — Read/Write Track/Sector overhead:

FIGURE 3.10 COMPARISON OF TIMES TO BLOAD A FILE OF $7000 BYTES

3-18

Obviously, the more sectors accessed the greater the rotational
delay. The chart in Figure 3.10 shows the times required to BLOAD
a binary program which is $7000 bytes in length ($70 sectors or 112
decimal). Using both experimental and theoretical methods, the
component delays to a complete disk access have been found.

Figure 3.10 shows that rotational delay amounts to more than 50 per
cent of the time required to load the file with standard DOS
skewing! By reskewing to 9 DESCENDING an improvement in disk
access time of 43 per cent was realized. Another interesting point
is that the DOS file manager overhead is quite high. This is the
processing time required to execute the instructions in the file
manager program itself, and this time is required even by the
commercially available "disk emulators" which simulate a disk drive
using RAM. Thus, emulators can do no better than to cut the delay
back to the file manager overhead as a minimum. This effects about
a three times improvement over standard DOS but not even a two
times improvement over the optimal skew. By reskewing, with no
additional investment in hardware, we have gained almost 2/3 of the
advantage of a disk emulator!

One further word on skewing as it applies to non-program files is in
order. The pattern of access of a BASIC program to its data files
varies drastically from program to program. Many times an
application will not return to the disk to read the next sector for
many revolutions — it might even allow the drive to turn itself off!
In this case, sector skewing becomes a consideration of relatively
low importance. Since access can also be affected by the number of
records in each sector, it becomes almost impossible to identify a
repeating computational delay. The best that can be said is that it
does not matter much which skew is used for data files and 9
DESCENDING will probably work as well as any other.

The table in Figure 3.11 shows the difference between the standard
2 DESCENDING skew and a 9 DESCENDING skew for typical disk
activities. It should be noted that these values may vary, because a
number of variables can affect the outcome, including hardware and
even the brand of diskette used. For this reason the reader is
encouraged to experiment with different skews, using the Bag of
Tricks INIT program, to find the best one for his particular
application.

3-19

Time in Seconds

Activity 2 Desc. Skew 9 Desc. Skew % Difference
Boot 7.0 6.6 6
Boot/load lang card 19.5 13.3 32
LOAD Basic File 8.0 5.0 38
SAVE Basic File 12.7 11.3 11
BSAVE X,A$800,L$7FFF 44.2 39.6 10
BLOAD X 31.7 17.4 45
Read Text File 7.9 8.4 -6
Write Text File 10.2 9.0 12
CATALOG 2.7 2.6 -4

FIGURE 3.11 — TIMING FOR TYPICAL DISK ACTIVITIES

Whereas the normal skewing on a DOS 3.3 diskette is far from
optimal, both PASCAL and CP/M appear to be optimally skewed.
PASCAL, which reads a 512 byte block (two Apple sectors), is
skewed 2 ASCENDING. This results in the most efficient read
possible for a block. CP/M reads a 1024 byte allocation unit (four
Apple sectors) and is skewed 3 ASCENDING. This also seems to
provide the greatest efficiency demonstrating that in both cases
great care was taken to insure optimal disk access. We recommend
using these standard skewing offsets for normal PASCAL and CP/M
operations. For particular applications, however, you should feel
free to experiment with alternate skewing patterns.

Regarding DOS 3.2, we have not made exhaustive tests. However,
current INIT and COPY programs use a 9 DESCENDING skew. A 6
DESCENDING skew seems to be optimal for loading programs under
DOS 3.2, and a 2 ASCENDING skew on tracks 0-2 is optimal for
booting.

3-20

CHAPTER 4
ZAP — By Don Worth

The ZAP utility allows you to read selected sectors from a diskette
and examine or modify them. It was originally patterned after the
IBM SUPERZAP utility but it is far more interactive. ZAP can be
used to examine normal, unprotected diskettes of both 13 and 16
sector formats. In addition, ZAP allows you to access files on DOS
diskettes as well as CP/M and PASCAL 16 sector diskettes.
Although ZAP provides over 50 commands and is extremely
powerful, a small subset of its commands can be used by the novice
to perform almost any operation desired.

For the user's protection, ZAP defaults to a write protected mode.
This means that no matter what you do while experimenting with
ZAP, you can not write to or otherwise damage your diskette. To
leave the write protected mode you must issue the ZAP command,
UNLOCK. This feature is intended to assist novices while they are
learning ZAP as well as to provide an added security level against
accidental damage to diskettes.

A BRIEF ZAP TUTORIAL

At this point a demonstration is in order. Boot up the Bag of Tricks
diskette, invoke ZAP, and follow along with the tutorial.

Upon entry to ZAP you will see a screen which looks like Figure 4.1.
Most of the time you are in ZAP you will see screens similar to this
one.

STATUS

LINE i

COMMAND

CURSOR

——SLOT NUMBER
DRIVE NUMBER

une —:0

" HEX

- ASCH

4-2

DUMP

00 £30000000000000000000000
0C 000000000000000000000000
18 000000000000000000000000
24 000000000000000000000000
30 000000000000000000000000
3C 000000000000000000000000
48 000000000000000000000000
54 000000000000000000000000
60 000000000000000000000000
6C 000000000000000000000000
78 000000000000000000000000
84 000000000000000000000000
90 000000000000000000000000
9C 000000000000000000000000
A8 000000000000000000000000
B4 000000000000000000000000
€0 000000000000000000000000
CC 000000000000000000000000

~ D8 000000000000000000000000
El4 000000000000000000000000
FO 000000000000000000000000
FC 00000000

—_ —
. HEX
—— BUFFER OFFSETS

VOLUME NUMBER

BUFFER TRACK
SECTOR e
[;FFSET-1 [

Z A P/- S6,1 V$2? T$?? S$27 +$2? #0 *DU1

sescesess 0000
seeceeccss s
eesseeccsses
seccseosocccs o
se e ceo0ccsase
sescecccocccen
seeesoseecocee
seecoeeccc s
secs e cescs e
eseeo e s s e
ses s esvsccsoe

L A A A Y

—BUFFER NUMBER

LOCK FLAG
TYPE OF DISK

UC/LC/IMAGE

INTER SLOT

seccsesssssee
P R
ceccccccccce
eseeossesses
sesccessesee
eecessccecses
R R
ececsesscves

~— T —
ASCIl .
EQUIVALENT

FIGURE 4.1 — BEGINNING ZAP DISPLAY

The top line of Figure 4.1 is an abbreviated status readout. Values
given with a dollar sign ($) are in hexadecimal. From left to right
the indicators are as follows:

SLOT NO.

DRIVE NO.
VOLUME NO.

TRACK

SECTOR

OFFSET

BUFFER NO.

LOCK FLAG

This is the last disk drive slot number accessed and it
will be the next one used if it is not changed by an S
command.

. Similarly, this is the last disk drive number used.

This is the volume number of the last diskette which
was accessed. In the case of Figure 4.1, ZAP has not
had a chance to access any diskette so no volume
number is yet available.

The last track accessed is displayed here. No track
has yet been accessed.

The last sector accessed. Taken together, the
TRACK and SECTOR readout indicate the origin of
the data displayed in the hex/ASCII display below.

This is the current byte offset into the sector buffer,
given in hex. It indicates the current position of the
buffer cursor (to be described later) within the buffer.
At present, since no data has yet been read from the
disk, it has no value.

There are 16 buffers (memory areas into which you
can read data) provided by ZAP. They are numbered
$00 through $0F. At present, buffer $00 is selected
and displayed. The buffer number indicator is also
used to remind you that you have made changes to the
buffer. If you should modify the buffer contents, the
buffer number will be displayed in inverse video.

Whenever you first enter ZAP, it places itself in
LOCK mode. As mentioned earlier, this prevents you
from accidentally writing on your diskette. When you
are in LOCK mode, an asterisk (*) appears in this
position on the screen.

4-3

—

ZAP DEFAULTS TO THE LOCKED MODE
TO PREVENT ACCIDENTAL WRITING

TYPE OF DISK

UC/LC/IMAGE

PRINTER SLOT

4-4

Initially, ZAP assumes you want to examine a 16
sector DOS diskette. A "D" is displayed here to
indicate this. If you issue the appropriate com-
mands you can change this setting to PASCAL
("P™) or CP/M ("C"). Both 13 and 16 sector DOS
disk types are denoted by a "D". To determine
which is in use, use the STATUS command
(described later).

The character printed here indicates which
translation is used on the ASCH display given
below on the right side of the screen. If a
standard ASCII translation is used, a "U" or a "L"
is printed to indicate whether lower case char-
acters are printed as their upper case equivalent
("U") or printed as lower case ("L"). If IMAGE
mode is in effect (described later), an "I" appears
here. :

This is the slot number for an optional printer. If
you have a printer controller card in the indicated
slot, you may issue commands within ZAP to dump
the sector in hex and ASCIHII onto the printer,
create an audit trail of changes you make to the
disk, ete. When LOGGING (audit trail) is turned
on, the printer slot number is printed here in
inverse video.

Just below the status line is the command input line. It is here that
you type commands for ZAP. Notice the cursor (the familiar
flashing block) next to the prompt character (a colon). The right
half of the command line is sometimes used to display error

messages as well.

Below the command input line is the hexadecimal and ASCIH display
of the contents of the current sector buffer. In the example of
Figure 4.1, no sector has been read so zeros are displayed. Given at
the far left are the hex offset locations for the first byte on each
line. This is done so that you can easily determine the offset of any
byte by counting to the right from the first on its line. Each line
(except for the last one) shows 12 bytes of hex followed by its
equivalent in printable ASCII. If this were the display of the
catalog, for example, you would see file names over on the right
hand side of the screen. A total of 256 bytes (one sector's worth) is
displayed.

Notice that the first hexadecimal byte is in inverse video. This
indicates that the buffer cursor is pointing to this byte. Using ZAP
commands, you may move the buffer cursor around the buffer to
indicate where changes are to be made.

At this point you may be wondering about the concept of a sector
buffer. In general, ZAP allows you to read a sector into the sector
buffer (which is really just a portion of memory at $5000 in your
machine). When this happens, the sector is copied from the diskette
into this 256 byte memory area. Nothing is changed on the diskette
itself. Using ZAP commands, you may change the contents of this
buffer to your heart's content. You have not changed the original
sector on the diskette in any way. Should you wish to change the
sector, you must instruct ZAP to write the contents of the sector
buffer back over some sector on the diskette (you don't have to
write it over the same sector from which it was read if you don't
want to but this is usual). Working with the buffer in this way, you
can take your time making corrections on a sector by sector basis,
reducing your chances of making mistakes that ruin your diskette.

Now it is time to actually read a sector from the diskette into the
buffer. Insert your practice diskette into your drive and type the
following ZAP command, followed by a carriage return.

R11,0

4-5

(If your practice diskette is formatted with 13 sectors you should
first type the command, DOS13, to inform ZAP of this.) The disk
drive will turn on and in a moment the display will change. What
you have just entered is a READ command, instructing ZAP to read
the sector it finds on track $11, sector $00. If you have read
Beneath Apple DOS you know that this is the Volume Table of
Contents (VTOC) for the diskette. The actual contents of the VTOC
for your practice diskette are displayed in hex and ASCH on the
screen.

Now you will tell ZAP to read the first CATALOG sector. The
CATALOG resides on the same track as the VTOC so all you need to
do is specify the sector number you want — you need not respecify
the track: -

R,F

%BA P - S6,1 V$01 T$11 S$OF +$00 #0 ¥DU1
o, F

00 00110E000000000000000012 .ceveeeennss
0C OF02C8C5CCCCCFAOAOAOAOAO ..HELLO

18 AOAOAOAOAOAOAOAOAOAOAOAO

24 AOAOAOAOAOAOAO0A00200130F v e
30 O4C2C9CEC1D2D9A0C6CICCCS5 .BINARY FILE
3C AOAOAOAOAOAOAOAOAOAOAOAO

48 AOAOAOAOAOAOA00200140F02 “ e ae
54 C1DODOCCC5D3CFC6D4AODOD2 APPLESOFT PR
60 CFC7D2C1CDAOACAOAOAOAOAD OGRAM

6C AOAOAOAOAO0A00200150F00D4 T
78 C5D8DUAOCHCICCCS5A0A0AOAO EXT FILE

84 AOAOAOAOAOAOAOCAOAOAOAOAO

90 AOAOAO0A0A002000000000000 @
9C 000000000000000000000000 ...cccvvee. .o
A8 000000000000000000000000 cee
B4 000000000000000000000000 ...cccv... P
CO 000000000000000000000000 ...cccvevvee

CC -000000000000000000000000 .ccccceuecss
D8 000000000000000000000000 «..coveveenn
E4 000000000000000000000000cccc0ne
FO 000000000000000000000000 cecenns
FC 00000000 ceve

FIGURE 4.2 — A CATALOG SECTOR

Here you are telling ZAP to read sector $0F on the current track
(track $11). (If your practice diskette was made by DOS 3.2 or DOS
3.1 you should type "R,C" instead, since sector $0C is the last sector
of a 13 sector track.) You should now be looking at the first sector
of the CATALOG. Your screen should look like Figure 4.2.

Suppose you wanted to use ZAP to change the name of one of the
files in the CATALOG. This may not sound too useful, since the
DOS RENAME command will do this. Under some circumstances in
DOS it is possible to create a file with a control character imbedded
in the name, making it difficult if not impossible to delete or
‘rename the file. To correct such a situation, it might be necessary
to use ZAP on the CATALOG directly. Imagine that the file named
"HELLO" has a bad character in it. To fix the name, you must
position the buffer cursor to the part of the buffer you want to
modify. Type the following command:

+E

This tells ZAP to position the buffer cursor forward $0E (14 decimal)
bytes from its current position ($00). The cursor should now be over
a $C8, the "H" in HELLO. Now type:

¢HI THERE'

(Be sure to type the colon) You have now told ZAP to store the
string 'HI THERE' into the buffer, starting at the buffer cursor.
Notice that ZAP has advanced the cursor to point past the last
character stored. At this point you might think you are done. You
have renamed the file to HI THERE. Wrong! Remember that all
you have done so far is to update the memory image of the sector in
the buffer — you have not yet written that updated image back to
the diskette. ZAP reminds you that you have modified the data
originally read in by highlighting the buffer number on the status
line. Let's pretend that you have forgotten to rewrite the modified
sector, and try to read the VTOC again. Type in the command:

R,0
What happens? ZAP beeps and prints an error message:
WARNING: BUFFER CHANGED

47

Notice that the buffer number is not highlighted anymore. This
means you will only get one warning. If you do not write the buffer
now, but rather re-enter the read command, ZAP will give up and do
the read, discarding the changes you have made to the buffer.
Instead, heed the warning and write the sector back to disk. Enter
the command:

WRITE
What you get is another error message!
WRITE PROTECTED

Remember that LOCK protection is assumed by ZAP. You must
UNLOCK ZAP before it will allow you to do anything which might
change your diskette. Do this now:

UNLOCK

Notice that the asterisk (*) has disappeared from the status line.
ZAP will now permit write commands. Try the WRITE command
again. This time it works! The drive turns on for a moment and
then stops. Before proceeding, relock ZAP by typing LOCK. To
convince yourself that the change has been made, re-read the sector

by typing:
' R

No track or sector number was given since ZAP will assume you
mean to read the current sector. (The R command is handy when
you want to cancel some modifications you have made to the
buffer). In this case nothing changed on the screen but the drive
turned on and off. This means that what was read matches exactly
what is in the buffer. The change must have been made on the
diskette. You can verify this later by CATALOGing the disk under
DOS.

Now we will try some other features of ZAP. It turns out you don't
need to remember the location of the VTOC or CATALOG. ZAP
knows where they are and will find them for you if you enter either
the VTOC or the CAT command. Try it!

Up to now you have made absolute references to the diskette's
tracks and sectors. ZAP will also let you "open" a file. By file we
mean one of the files catalogued by the DOS file manager. While the
file is open, all references are made as "file relative". This means

4-8

that, instead of asking ZAP to read track $11, sector $00, for
instance, you will ask it to read the $04th sector of the file (or even
the $57th record, if you are looking at a random text file). You can
try this out on a very short file by opening one of the files on your
practice diskette. Type:

OPEN'BINARY FILE'

The disk turns on and after a while the screen looks like Figure 4.3.

Z AP - S6,1 V$01 RSA=$0000 +$00 #0 *DU1
:@PEN'BINARY FILE'

00 D00330004CBF9D4CB4I9DUCFD P.0.L?.L..L
0C AA4CBSBTADOF9DACOE9D60AD *¥L57-..,..,-
18 C2AAACC1AA6O4CS1ABEAEALC B¥*,A¥*, LQ(JJL
24 S9FABF9D384C58FFUC6S5FFUC YZ?.8LX_LE_L
30 65FF65FFA000000000000000 E_E_
3C 000000000000000000000000 ceveses
48 000000000000000000000000 ...cvveeeenns
54 000000000000000000000000cccveveen
60 000000000000000000000000 ...cecovcnns
6C 000000000000000000000000ccc0 .o
78 000000000000000000000000cccvenee
84 000000000000000000000000cocvvees .
90 000000000000000000000000 ceesene
9C 000000000000000000000000 cessee
A8 000000000000000000000000 oo
B4 000000000000000000000000 ..cvvveeenns
CO 000000000000000000000000 ...cceeeenaens
CC 000000000000000000000000 ...cevcceces
D8 000000000000000000000000 ...covveeenes
E4 000000000000000000000000 ...ccvvvvene
FO 000000000000000000000000cccvenee
FC 00000000 cone

FIGURE 4.3 — A BINARY FILE SECTOR

Notice that the status line has changed somewhat. The T$ and S$
(track and sector) have been replaced with a relative sector address
(RSA). You are looking at the $00th relative sector of the file.
The next sector, if there was one, might be at the other end of the
diskette, but it could be accessed now by typing R1. You will not be
able to read absolute track/sectors while the file is open, only
sgctors within the open file. You can always determine whether a
file is open by looking at the status line for the T and S or the RSA.

4-9

While you are looking at the first sector of a typical binary file, you
can find out the Address and Length values for the file by looking at
the first four bytes in the display. Notice that the first two are
D003. Two-byte values are usually stored with the least significant
byte first so this is actually $03D0, the address you specified when
the BSAVE command was issued. The next two bytes are 3000, so
the length is $0030.

If you can read assembly language and want to see what is in a
binary file, you can use ZAP's mini-disassembler. It's just like the
one in the Apple monitor (in fact it uses the disassembler in the
monitor!). Type the following:

4

This tells ZAP to move the buffer cursor to the fourth byte of the
sector buffer, past the address and length bytes to the first byte of
the binary data. Now type:

I

The hex/ASCI display has been replaced with a disassembly of the
first 20 instructions. Since this memory was saved from $3D0, you
are looking at the page 3 DOS jump vector table. To erase the
instructions and see the hex/ASCII display again, press RETURN.
Notice that the buffer cursor has been moved to point to the first
byte following the last instruction disassembled. Thus, if you
wanted to, you could "page" through all of the instructions in a
sector by typing "I" repeatedly.

Another useful feature of ZAP is its trace table. Each time your
screen is updated, ZAP makes an entry in an internal table of 32
entries called a trace table. Each entry contains your current
position on the disk in terms of track/sector and buffer offset or
RSA and buffer offset. To back up to the last place you have been
you need only enter the following command:

<

Enter the less-than symbol now, followed by RETURN. The buffer
cursor backs up to its position prior to issuing the I command. If
you type < again the cursor will be positioned where it was when you
first OPENed the file, at $00. You can go forward in the table too.
Type a > and press RETURN. The cursor advances to the start of
the binary data again. If you press > again you will be back to your

4-10

last position, following the instructions you disassembled. Pressing
the > once more gives the error message:

END OF TRACE

ZAP can do many things for you but it can't see into the future!
The 'END OF TRACE' message will also appear if you back up too
far. If you are interested, you might type:

TRACE

You will see a formatted list of all the trace entries in the current
trace table with an indicator next to your current position in the
table. The trace table is particularly handy when you are scanning
through a file for some string and you want to back up to a
previously found occurrence again. Note that OPENing a file clears
any existing trace table entries. This is to avoid ending up in a
position that is outside the bounds of the file.

Now close the file and return to absolute track/sector mode by
typing the command:

CLOSE
The T$ and S$ reappear on the status line indicating that a file is no
longer open. We will now digress from the tutorial briefly to discuss
how eommands are entered to ZAP. _

Most ZAP commands take one of three forms:

COMMAND type example

no operands VTOC

one or two numeric operands R11,0

a string operand OPEN'BINARY FILE'

For example, the VTOC command has no operands (none are needed).
The Read and WRITE commands can have operands, however. For
example, if one numeric operand is given following the R command
(and no file is open) it is taken to be a track number (and sector 0 is
assumed). If two are given, they are the track and sector number to
use. The OPEN command has a single string operand, the file name.
String operands can be given either as characters enclosed within
single quotes or as two digit hexadecimal values following an
%ti%p:lal dollar sign. For example, the following two commands are
iden : :

4-11

OPEN'HELLO'
or
OPEN$C8C5CCCCCF

In addition, you may use double quotes to specify ASCH characters
where the most significant bit (MSB) is off (the OPEN command
ignores the MSB in any case but it may make a difference on other
commands).

Numeric operands may be given in hex, decimal or character. For
example:

R$11,12.
R,F

Notice that decimal numbers must have a decimal point after them.
Hex numbers may be preceeded by a dollar sign but this is not
required. A numeric operand can also be in the form of an
expression. Expressions consist of numeric values added or
subtracted from one another:

R$11+'C-AM 2.
R,+1

The last example here points out the fact that most numerie
operands can be relative as well as absolute. In this case you are
saying "add one to the current sector number and read" or, in other
words, "read the next sector". To back up one sector you would

type:
R,-1

ZAP provides a shorthand way for going to the next sector or
backing up one sector. The N command goes to the next sector and
the P command goes to the previous sector. These commands are
identical to those shown above. You can even move forward several
sectors:

| R,+99.
Another way of doing this is:

N99.

4-12

Likewise, if a file were open you could move forward 5,000 bytes in
the file by typing: ’

+5000.

You can experiment with expressions by using ZAP's built in
calculator command. Just type a question mark followed by an
expression. For example:

?512.-$FF+1

Enter the command above and press RETURN. The following
message is displayed:

258. $000102

The results of the expression calculation are given in both their
hexadecimal and decimal form. You'll find the ZAP calculator
command is handy for computing offsets as well as converting hex to
decimal and decimal to hex.

This ends the introductory tutorial. All of the ZAP commands will
now be covered in detail. Additional tutorial-like uses for ZAP are
provided in Chapter 6.

i

THE ZAP CALCULATOR. COMMAND

4-13

ZAP COMMANDS

In general, ZAP commands consist of one or more characters of
command name followed by zero, one, or two operands. No spaces
may appear between the command name and its operands. For
example:

WRITE11,0
is valid but:
WRITE 11,0

is not. This restriction is necessary since multiple ZAP commands
‘may appear on one line, separated by blanks. For example:

N +3 HI THERE' UNLOCK WRITE LOCK

will advance to the next sector, move the buffer cursor forward 3
bytes, store the string 'HI THERE' into the buffer at the current
position, unlock ZAP to allow writes to the diskette, write the
modified sector image back to the diskette, and re-lock ZAP — all
without any additional user intervention. Obviously, putting a blank
between a command and its operands will cause ZAP to interpret the
command as if no operands were given and to attempt to interpret
the operands as a second command on the line!

If an error occurs during the execution of any command, an error
message will appear on the left half of the command line. Execution
of the command and any commands following it will be aborted.
Error messages will be described in detail in a later section of this

chapter.

Any operation which is time consuming (such as a disk search or
multiple commands on a line) may be prematurely aborted by typing

any key on the keyboard.

414

ZAP commands fall into several categories:

INPUT/OUTPUT COMMANDS
BUFFER MODIFY COMMANDS
COMPARISON COMMANDS
OPTION SWITCH COMMANDS
FILE COMMANDS

PRINTER COMMANDS

THE BUFFER COMMAND
MACRO COMMANDS

LABEL COMMANDS

TRACE COMMANDS
MISCELLANEOUS COMMANDS

Each of these categories will be covered now. The general format
of each command will be shown first, followed by a description of its
use. Wherever the string /EXP/ appears, you may replace it with
any valid expression whose computed result will be used for the
value of the operand. Do not type the slashes. Expressions are
formed by combining one or more terms, such as hexadecimal
numbers, decimal numbers followed by a decimal point, character
strings (see below), or label variables (to be described later), using
addition (+) or subtraction (-). Examples of valid expressions are:

15
15.

'B'-157.+A

(hex $15)
(decimal 15)

(ASCII for B less 157 decimal plus hex A)

PROGRAM+3E3 (Label variable plus offset in hex)

+ENTLEN

(Add label variable to current value)

4-15

/STR/ represents a string operand, either hex or characters. A hex
string may be up to 16 bytes in length and may be preceded by an
optional dollar sign. A character string may be up to 32 characters
in length and must be surrounded in either single or double quotes.
If single quotes are used, the ASCIHI representation of each character
is assumed to have the most significant bit on (standard Apple
practice). If double quotes are used, the MSB is assumed to be off
(CP/M and PASCAL practice). Examples of valid strings are:

$3DOFS56BETF (Hex string of 5 bytes)

5 (hex string of 1 byte)

'HI THERE' (Character string of 8 characters, MSB on)
"CPM FILE" (Character string of 8 characters, MSB off)

INPUT/OUTPUT COMMANDS

/EXP/

Move the buffer cursor to the offset given by /EXP/. /EXP/ may
range in value from $00 to $FF (0 through 255.).

+/EXP/ ...or... -/EXP/

Move the buffer cursor to a new offset, computed by adding or
subtracting the value of the expression, /EXP/, to or from the
current buffer offset. If the result is prior to or after the current
sector, ZAP will read the appropriate new sector first. For
example, if the command +256. is issued, ZAP will read the next
sector on the diskette (or in the file) and position the buffer cursor
to the same offset as before. The command +257. would position
the cursor in the next sector at one byte beyond its original position.
Values for /EXP/ may be from -8388608. to +8388607.. If the newly
computed sector is past the end of the current track, the track
number will be modified as well. Likewise, wraparound will occur
at the beginning and end of the diskette or file (if in the WRAP
mode). ‘

4-16

R/EXP1/,/EXP2/ ..or.. R/EXP1/ .or.. R,/EXP2/ ..or.. R

NO FILE OPEN: Read the track and sector indicated by /EXP1/ and
/EXP2/ respectively. If the sector number is omitted, as in the
second format shown above, zero is assumed. If the track number is
omitted, as in the third format, the current track number is
assumed. If both are omitted, the current track/sector is reread.
/EXP1/ and /EXP2/ may be either absolute or relative. If relative,
wraparound will occur at the beginning/end of the diskette or file (if
in WRAP mode).

FILE OPEN: If a file is open, /EXP1/ represents the record number
and /EXP2/ represents the byte offset in that record. The record's
position is computed by multiplying the record length specified by
the RLEN command by the record number given, resulting in the
absolute byte offset into the file.

WRITE/EXP1/,/EXP2/ ..or.. WRITE/EXP1/ ..or.. WRITE,/EXP2/
..or.. WRITE :

NO FILE OPEN: Write the contents of the current sector buffer out
to the diskette at the track and sector indicated by /EXP1/ and
/EXP2/ respectively. If the sector number is omitted, zero is
assumed. If the track number is omitted, the current track is
assumed. If both are omitted, as is usually done, the buffer is
written to the current track/sector. As with the R command,
/EXP1/ and /EXP2/ may be absolute or relative. '
FILE OPEN: If a file is open, /EXP1/ and /EXP2/ indicate the record
and byte offset. In this case, the data in the buffer is written to the
sector containing this byte.

N/EXP/ ..or.. N

NO FILE OPEN: Move to the next sector. If /EXP/ is used, add the
value of /EXP/ to the current sector number and read the new
sector. If no /EXP/ is given, a value of +1 is assumed. /EXP/ may
be any absolute value from -8388608. to +8388607.. Passing over a
track boundary will result in moving to the next track. Wraparound
will occur at the disk or file boundaries (if in WRAP mode).

FILE OPEN: If a file is open the N command reads the next record in
the file.

4-17

P/EXP/ .or.. P

NO FILE OPEN: Move to the previous sector. If /EXP/ is used,
subtract the value of /EXP/ from the current sector number and
read the new sector. If no /EXP/ is given, a value of 1 is assumed
(back up one sector). /EXP/ may be any absolute value from -
8388608. to +8388607.. Passing over a track boundary will result in
moving to the previous track. Wraparound will occur at the disk or'
file boundaries (if in WRAP mode).

FILE OPEN: If a file is open the P command reads the previous
record in the file.

%

Indirect read command. Used only in absolute mode (no open file).
The % command looks in the sector buffer at the current offset for
a two byte track/sector pair, then reads the indicated sector into
the buffer. This ecommand is handy when following a chain of
track/sector pointers on a diskette, such as in the catalog or in a
track/sector list.

BUFFER MODIFY COMMANDS

S/S'F R/ e eOlee ¢

Store command. The colon command replaces the contents of the
buffer at the buffer cursor location with the string operand. The
string may be hex or character. If no string is given, then the
previous store string (if any) is used. The store string is the last
operand of any buffer modify command (:,SET,&,0,X). This allows
multiple stores of the same string without having to retype the
string over and over again. The colon command is the only ZAP
command which may follow another on the line without an
intervening blank. This allows a construction similar to the Apple
monitor (3E:00, for example)-

4-18

SET/STR/ ..or.. SET

Multiple store command. The SET command will set the remainder
of the buffer (from the buffer cursor on) to the specified string. If
no string is given, the previous store string is used. For example,
you can set the entire buffer to zero by moving the buffer cursor to
offset 0 and issuing a SET0 command. If a string of more than 1
byte is given, it will be repeated in the buffer until there is not
enough room left to store the full length of the string again.

&/STR/ ..or.. &

Logical AND command. The ampersand command will perform a
logical AND function between the given string and the contents of
the buffer at the buffer cursor location. If no string is given the
last store string is used. For example, &7F will turn off the MSB of
the byte at the current buffer cursor location.

O/STR/ ..or.. O

Logical OR command. The O command will perform a logical OR
function between the given string and the contents of the buffer at
the buffer cursor location. If no string is given the last store string
is used. For example, 080 will turn on the MSB of the byte at the
current buffer cursor location. '

X/STR/ ..or.. X

Logical Exclusive OR command. The X command will perform a
logical exclusive OR function between the given string and the
contents of the buffer at the buffer cursor location. If no string is
given the last store string is used. For example, X01 will make an
odd byte even or an even byte odd.

4-19

COMPARISON COMMANDS

L/STR/ ..or.. L

Look command. The L command searches the buffer for the given
string starting with the byte following the buffer cursor, and, if an
occurrence of the string is found, the buffer cursor is left over the
first byte of the matched string. If an occurrence cannot be found in
the buffer, the next sector is read and also searched. This continues
until a match is found or until the search wraps around, back to its
starting location (if in WRAP mode). Searching can be done in
absolute mode (no file open) when the entire disk will be searched,
or in file mode (file open) when just the file is searched. Matches
can occur even where the string crosses a sector boundary. If no
string operand is given, a previous search resumes using the current
comparison string (from the last L or V command). Thus, you may
start a search, and, after finding an occurrence, look for further
occurrences by typing L. The search may be interrupted at any
time by typing any key.

V/STR/ ..or.. V

Verify command. The V command verifies that the string under the
buffer cursor matches the given string. If it does not, an error
message is displayed. If no string is given, the current comparison
string is used. The V command can also be used to delimit the
bounds of a search. Position to the last sector to be searched and
type a V command with the search string to be used. Position to the
first sector to be searched and type L without entering the search
string. The look command will use the search string and search
boundary established by the previous V command.

COMPARE/EXP/

The COMPARE command compares the contents of the current
buffer to another buffer, from the buffer cursor location to the end
of the buffer. /EXP/ is the buffer number of the buffer to be
compared to the current one. Using the # command (described
later) you can read two sectors into two different numbered buffers
(one into 0 and one into 1, for example). You can then type
COMPARE]1 while you are displaying buffer 0 and this command will
compare the two images, byte by byte. If they do not match, the
buffer cursor is left over the first byte which differs and an error

message is displayed.
4-20

OPTION SWITCH COMMANDS

Most option switch commands act like binary switches. This means
that the commands toggle an internal ZAP "switch" which can be in
either of two posltlons. These switches have an initial default
setting, but you may change them using option switeh commands.
Option switches control ZAP's operation in numerous ways, including
display of ASCII, the LOCK mode, ete.

LC

Sets the ASCIH translation on the right hand side of the hex/ASCH
display so that lower case characters will be printed "as is". ~This
mode is useful for users who have a lower case modification on their
Apple or when DUMPing sectors to a printer which supports upper
and lower case. The default setting for this switch is with LC off
LC only has meaning when the ASCIH switch is in effect. :

ucC

The opposite of LC. UC instructs ZAP to translate lower case
characters to upper case for display on the nght half of the screen.
UC mode is the default. UC only has meaning when the ASCH
switeh is in effect.

IMAGE

Sets the ASCII translation on the right hand side of the screen so
that minimal translation is done. Inverse and flashing characters
appear as is and only control characters which would adversely
affect the display are translated out. While IMAGE mode is in
effect, UC and LC modes are ignored. The default mode is ASCII,
not IMAGE.

ASCIHI
The opposite of IMAGE mode. UC or LC translations are done and
non-printing control characters are translated to periods. Flashing

and inverse video characters are translated to normal. ASCII mode
is the default.

4-21

LOCK

Sets ZAP into LOCK mode. While in LOCK mode ZAP will no
allow you to write to the diskette. LOCK mode is the initia
default.

UNLOCK

Resets LOCK mode allowing ZAP to write to the diskette.

DOS16

Informs ZAP that the diskette is a 16 sector DOS diskette. ZAP
uses this information when selecting the proper sector skewing
table, setting up its RWTS (Read/Write Track/Sector) package for 13
or 16 sector I/0, and for determining the catalog format for the
OPEN file command. After setting DOS16 mode, ZAP erases the
trace table, empties all of the buffers, and reads the first catalog
sector into the current buffer.

DOS13

Informs ZAP that the diskette is a 13 sector DOS diskette. After
setting DOS13 mode, ZAP erases the trace table, empties all of the
buffers, and reads the first catalog sector into the current buffer.
CPM

Informs ZAP that the diskette is a 16 sector CP/M diskette.
Processing is otherwise similar to that of DOS16.

PASCAL

Informs ZAP that the diskette is a 16 sector PASCAL diskette.
Processing is otherwise similar to that of DOS16.

4-22

WRAP

Sets ZAP into WRAP mode. This is the default initial state. While
in WRAP mode, ZAP will allow wraparound when an attempt is made
to read/write beyond the end of a diskette or file or before the

beginning.

NOWRAP

Turns off WRAP mode. When an attempt is made to read/write
beyond the end of a diskette or open file (or before the beginning of
them) an error message is displayed. This command is useful when
it is necessary to scan from the current location to the end of a file
or disk, without wrapping back to the beginning again.

FILE COMMANDS

As described in the tutorial that began this chapter, ZAP normally
operates in an absolute mode. While in this mode, all references are
at the track/sector level. If the OPEN file command is issued,
however, ZAP switches to a file relative mode. While in file mode,
all references to sectors are file relative. This means that the N
(next) command, for example, will read the next logieal sector of
‘the file, even if that sector is not the next physical sector on the
track. While in file mode, no absolute track/sector references may
be made and only sectors contained in the file may be accessed.

Having a file open modifies the operation of the R (read) and WRITE
commands as well. References are at the record/byte offset level,
rather than track/sector. The record length is initially set to 256.,
equating record numbers to relative sectors, but may be changed
using the RLEN command.

423

OPEN/STR/ ..or.. OPEN

Opens the file named by /STR/. If no string is given, the last file
opened is reopened. If a file is already open, it is closed, and the
new one is opened. ZAP searches the directory (based upon the type
of diskette in use) for the file name string. The file name string
may be given in hex or character (the MSB is ignored) and may be
specified in an abbreviated form, much like that of the Apple utility,
FID. If the last character of the name is an equal sign (=), ZAP will
select the first file name in the directory which starts with the
string. Once a file is found in the directory, ZAP will build a map
of the file's sectors in memory. This map can contain up to 512
relative sectors. In most cases this is sufficient even if the file
spans the entire diskette. If the file is an extremely large, very
sparse, random type text file, however, only the first 512 sectors
may be accessed. After building the sector map, ZAP reads the
first data sector into the buffer. The trace table is cleared and the
buffers are marked empty. Note that CPM and PASCAL file names
which do not have a suffix (such as .CODE or .SYS ete.) must be
specified with a trailing period. For example, a file named GORF
should be given as OPEN"GORF." or a file not found message will
oceur.

RLEN/EXP/

Sets the record length for use with the R (read) and WRITE
commands. The OPEN command sets the initial record length to
256. The record length is multiplied by the relative record number
given on the R or WRITE command to compute the relative byte
offset into the file. The record length may range in value from 1
byte to the length of the file in bytes. Note that changing the
record length will affect the N and P commands also.

CLOSE

Causes ZAP to exit file mode and return to absolute mode. The
RSA (Relative Sector Address) is replaced on the status line by the
Track/Sector of the current buffer.

4-24

WHERE

When in file mode, the WHERE command works identically to the
STATUS command. If no file is open (absolute mode), the WHERE
command will search each file in the diskette's directory to
determine whether it contains the current track/sector. If such a
file is found, it is opened, the sector is reread, and a STATUS
command is invoked to display the location of the sector in the file.
The WHERE command is particularly useful in identifying the file
containing a sector with an I/O error.

PRINTER COMMANDS

PR#/EXP/

Sets the slot number to be used with an optional printer. The
default is 1. If a printer controller card is plugged into this slot,
you may issue commands to dump sectors to the printer or produce a
LOG listing (audit trail). The printer slot in use is displayed on the
status line (the top line of the display).

PRINT

Copies the entire screen image to your printer. This command may
be issued to print any ZAP screen image, including the macro table
display, the label table display, and the help screens. If your printer
echos what it is printing on the screen this command may not work
properly and the DUMP command below must be used to dump out
sector contents. Note that some printer interface cards, such as
the Apple Serial Interface Card, allow you to inhibit print echoing.

DUMP/EXP/ ..or.. DUMP

Dumps the current sector buffer in hex and ASCII onto the printer.
A status line is also printed. The ASCII translation used is affected
by the ASCII/IMAGE/UC/LC switches. If an expression is given, it
represents the number of consecutive sectors (or records) to be
dumped. If no expression is given, only the current sector is

dumped.

4-25

IDUMP

Disassembles and prints the 6502 instruction equivalents for the data
in the sector buffer, starting at the current buffer cursor location
and proceeding to the end of the buffer. A status line is also
printed.

NOTE/LINE/

Prints a comment on the printer. The remainder of the line,
following the command NOTE, is printed on the printer as is (no
other ZAP commands may be issued on the same line following a
NOTE command). NOTE is useful to label a listing. For example:
NOTE THIS IS A PATCH TO DOS3.3 TO PREVENT ITS
DESTROYING THE LANGUAGE CARD.

LOG

Turns on LOGging mode. While in effect, the printer slot number on
the status line is displayed in inverse video. Each time ZAP reads
or writes a sector a status line is printed on the printer. Also, any
time a store (colon) command is invoked, a status line and the
"before" and "after" hex strings are printed. In this way, ZAP keeps
a complete record, or "audit trail", of your activities, allowing you
to determine later what was done, and, if necessary, "back out" bad
changes. Note that LOG mode produces a lot of output should you
use the Look command, OPEN, or WHERE (since many sector reads
are done). For this reason, it is recommended that LOGging be
turned on only when absolutely necessary.

NOLOG
Turns off LOGging mode. This is initially the default mode and is

indicated by a normal video representation of the printer slot on the
status line.

4-26

THE BUFFER COMMAND

ZAP maintains sixteen (16) 256 byte areas, called buffers, into which
you may read sector images. More than one buffer is provided to
allow you to simultaneously manipulate multiple sectors without
having to write any of them back to disk until all changes are made.
Likewise, multiple buffers are handy when writing macros to
compare or copy files or complete diskettes. The current buffer
number (in hexadecimal) is displayed on the status line next to the #
sign. Initially buffer zero (#0) is displayed. Each buffer has
associated with it a track and sector number for the sector image it
holds (if a file is open this is also true, although in this case it is in
terms of a relative sector address (RSA)). This "tag" information is
set whenever an INPUT/OUTPUT COMMAND is issued for that
buffer. If no I/O command has ever been issued or if the type of
diskette (DOS16, etc.) has changed or if a new file is OPENed, these
tags are erased (since they are no longer meaningful) and the buffer
is considered "empty". An empty buffer is denoted on the status
line with question marks in the track/sector (or RSA) fields but the
data remains intact to allow you to copy or compare data across
different files or diskette formats.

#/EXP/

The # command selects a buffer (from $0 through $F) to be displayed
and manipulated. The expression may be absolute or relative (for
example, #+1 is valid as long as you do not exceed the valid buffer
number range).

MACRO COMMANDS

One of ZAP's most powerful features is the ability to write your own
macros. A macro is, functionally, a string of ZAP commands,
associated with a short name. Whenever you type the name, it is
automatically replaced on the command line with the string of
commands it represents. In this way, using a combination of ZAP
commands, you can define your own commands. Macros are also
handy to provide a shorthand way of performing multiple tasks. In
mCtnpter 6 there are examples that use macros to copy and compare
es.

4-27

Macro definitions are preceded by an open parenthesis and end with
a close parenthesis. An example macro definition might be:

(ZOT UNLOCK WRITE LOCK)

Here, the first word in the definition is the name of the macro
itself, ZOT. Each time the word ZOT appears on a command line it
will be replaced by the string "UNLOCK WRITE LOCK" and these
commands will then be processed. In this case, the ZOT command
just defined will defeat the lock mode protection by unlocking,
writing, and relocking — a quick and dirty way of forcing a write
command to work. Incidentally, a macro definition may contain the
name of another macro (nested macros) if you desire. For example,
a new macro could be defined as follows:

(ZIT ZOT NOTE FORCED WRITE)

In this case, the ZIT macro invokes the ZOT macro and then prints a
comment on the printer, "FORCED WRITE". Be careful, however.
If a macro invokes itself, either directly or indirectly, recursion will
occur and you will fill up the command line and an error message
will be displayed. The final size of the command string, after all
macro string replacements have been made, may not exceed 256
characters.

To some extent, a macro can have operands. Consider the following
macro:

(Z WRITE)

Whenever the Z macro is invoked, a WRITE command is performed.
If you entered a command of the form:

Z11,0
the line would look like this after macro replacement:
WRITE11,0

Since the last command in the macro's string can take operands,
then the macro can take operands as well,

4-28

ZAP maintains a 256 byte macro table. Using the macro definition
command you may store several macros in this table. At most, 256
characters may be stored. The table might contain one huge macro
or several smaller ones. You may save the entire table by using the
MSWAP command, described later, or you may print it using the
MACROS and PRINT commands. If you try to define a new maecro
but there is not enough room left in the table you will see a "TABLE
FULL" error message. In this case, you will have to delete an old
macro that you (hopefully) no longer need to make room for the new
macro and retry the definition.

ZAP provides you with several built-in macros. These macros are
predefined for you when you first enter ZAP. You may use them or
delete them at your option. They have been chosen for their
general utility as well as for being good examples of macros. They
are:

MREAD - If you are currently viewing a sector in buffer zero,
MREAD will read it and the next 15 sequential sectors into buffers 0
through 16, allowing you to modify multiple sectors (one track’s
worth) at a time.

MWRITE - Writes the contents of all of the buffers back to the
diskette.

SAVEM - Saves the contents of the macro table by writing it to
track $02, sector $0F (an unused sector on diskettes containing DOS
3.3 on tracks 0, 1, and 2) on the current diskette.

LOADM - Reloads the macro table from track $02, sector $0F of the
current diskette.

REOPEN - If a file was previously open and you are still positioned
to a sector belonging to that file, REOPEN re-opens the file and
positions to that sector.

LAST - Positions to the last byte of an open file or the last byte of
the diskette (WRAP must be allowed for LAST to work properly).

QUIT - An alias for the END command. Many users are more used
to QUIT to exit a program then END.

4-29

The commands associated with macros are:

(/NAME/ /TEXT/)

Macro definition. The entire definition must be enclosed in
parentheses. It may not contain another macro's definition. The
first word is used as the name of the macro itself. The name may
be of any length and may contain any characters or numbers. If a
macro by this name already exists, the old macro is replaced with
the new definition. Care should be used in choosing macro names to
avoid conflict with existing ZAP commands, label variables or other
macros. ZAP gives precedence to macros over its own commands,
so, if you really wanted to, you could redefine a ZAP command to do
something else. For example, (HELP NOTE THERE IS NO HELP
FOR YOU). In this example, the true ZAP HELP command cannot
be accessed until this macro is deleted. For this reason, (WRITE
UNLOCK WRITE LOCK) would not work, since, in redefining the
WRITE command, you have denied yourself further access to the
original. The /TEXT/ is separated from the name of the macro by
one space and may be of any form as long as it does not contain a
closing parenthesis character. Another warning involves the way
ZAP scans for commands. If you were to define a macro called
"GO" and later define a macro called "GORF" one might expect that
invoking the GORF macro would actually produce the GO macro
followed by the operand "RF". ZAP will prevent this kind of thing
from happening by deleting GO when you define GORF. It is still
possible to run into trouble, however, if you define a macro whose
name is a shortened version of a label variable or ZAP command.
For example, WR is not a good name for a macro since it would
prevent you from getting at the ZAP WRITE command.

//NAME/

The / command deletes the macro whose name is /NAME/ from the
macro table.

MACROS

Displays all currently defined macros on the screen in place of the
hex/ASCIl dump. Press return to redisplay the hex/ASCIH again.

4-30

MSWAP

the contents of the current sector buffer with those of
the macro table. The sector buffer must contain a valid macro
table, previously created by the MSWAP command, or it must be
precleared to zeros (use the command SET0 — this creates a macro
table image which contains no macros). The table data should not
be modified in any way while it is in the sector buffer as this will
result in a "BAD DATA FORMAT™" error message. Thus, to save the
carrent contents of the macro table you could use the following

SET0 MSWAP UNLOCK WRITE2,F MSWAP

This would preclear the buffer to zero, swap this "empty" macro
table with the one you want to save, write the table to be saved to
the diskette, and then swap it back into the macro table. To reload
the macro table you would use the following commands:

R2,F MSWAP

The MSWAP command can be used by the sneaky macro programmer
to extend the allowable space for macros beyond 256 bytes. This
can be done by storing one or more additional macro tables in
otherwise unused ZAP sector buffers and then MSWAPping them in
as needed under the control of another macro.

LABEL COMMANDS

ZAP allows the definition of up to ten label variables. A label
variable is much like a variable in BASIC. It consists of a name
(from one to eight characters in length) with which ZAP associates a
track number, sector number, and buffer byte offset (when a file is
open, label variables represent an RSA and buffer byte offset). The
usual use of label variables is to remember your place in a file or
somewhere on the diskette. For example, imagine that you have,
after much searching around, located the HELLO file name in DOS.
You want to associate a "name tag" with this position on the
diskette so you define a label as follows:

=HELLO

431

Later, after positioning to other sectors on the disk, you want to
return to the HELLO file name's sector again so you type:

HELLO

ZAP looks up the word HELLO in its macro table first and doesn't
find a macro by that name. It then searches its label table and finds
a definition for HELLO. The sector containing the HELLO file
name is read and the buffer cursor is left over the first byte of the
file name.

Labels may be followed by expressions, For example, if you have
defined a label to point to a subroutine in a binary file which
contains an assembly language program you are debugging, you can
position to an offset in that subroutine. For example:

SUBRTN+3E3

ZAP will compute the proper sector to be read and read it, leaving
the buffer cursor at the appropriate offset.

Label variables can also be used as terms in an expression. When
labels are employed in this way, the track and sector part of the
label is ignored and only the buffer offset value (from $00 to $FF) is
used. The reason for doing this can be made clear by the following
example: h

35.

=EL
11.

+EL
+EL
+EL
ete.

Suppose you were looking at a DOS catalog sector. Each file's entry
is 35 bytes long. By positioning to buffer byte 35 decimal (which
has no special meaning, apart from being at the right offset) and
assigning a label, EL (for entry length), we have a convenient way of
moving from catalog entry to catalog entry. After positioning to
byte 11 decimal, it is a simple matter to instruct ZAP to position
+EL bytes forward each time we want to see where the next file's
entry begins. To sum up, if a label appears first in a command
string, its track and sector values are used, but if it appears later in
an expression, only its buffer byte offset is used.

4-32

The same caveat exists for label variables as for macros. Try to
avoid picking names which might conflict (even partially) with those
of ZAP commands. Remember that your macro names take
precedence over your label names, and your label names take
precedence over ZAP command names.

One label, the * label, is predefined for you by ZAP. The *
(asterisk) label always contains the position following the last read
or write operation. * is very useful when reading into an "empty"
buffer, since there is no other way to make a relative reference
(R+3 or the N command are not valid in an empty buffer).
Commands connected with label variables are:

LABELS

Display all currently defined labels on the screen. To return to the
hex/ASCIH display, press RETURN.

=/NAME/
Define a new label (or redefine an old one) with the current position.

Up to 10 labels (including *) may be defined. The name must be one
to eight characters or numerals in length.

//NAME/
Delete a label from the table to make room for new ones. Note

that this is the same as the delete macro command. You may not
delete the * label.

/NAME/

Position to the track/sector/offset associated with the label whose
name is /NAME/.

/NAME/+/EXP/ ..or.. /NAME/-/EXP/

Compute a location which is the sum (or difference) of the location
associated with the label variable whose name is /NAME/ and the
expression and read that sector into the buffer.

4-33

LSWAP

Exchanges the contents of the label table (not including the * label) -
with those of the current sector buffer. This command works
almost identically to the MSWAP command, deseribed in the section
on macros. The sector buffer must contain a valid label table
image, previously LSWAPped, or it must be set entirely to zeros.

~ The label table may be saved in exactly the same way as is the .

macro table. (A DOS 3.3 diskette containing a boot image of DOS .
-on tracks 0 to 2 does not use sectors 5 through F of track 2. These.
are safe places to store label and macro tables.) Note that it is
possible using LSWAP for labels to become defined which are not
within the bounds of a previously OPENed file or which describe
sectors which do not exist on a 13 sector diskette. If these labels
are referenced, error messages will result. ' '

TRACE COMMANDS

As mentioned in the tutorial that began this chapter, ZAP keeps a 32
entry trace table that records your movements within a sector
buffer or over the diskette or open file. This allows you to back up
to a previous position and move forward again to your last position.
Each time your display is updated, if the buffer cursor has moved or
if a new sector has been read, an entry is made in the trace table.
If the trace table is full, the oldest entry is removed to make room
for the newest one.

TRACE

This command displays all of the trace entries and indicates which is
current. Press RETURN to recover the hex/ASCH display.

<

Back up one trace table entt;y. If no more ‘previous entries exist an
error message is printed.

>

Move forward one trace table entry. If no more future entries
exist, an error message is printed.

4-34

MISCELLANEOUS COMMANDS

AT/EXP/ ..or.. AT

The AT command is similar to the /EXP/ command listed under
INPUT/OUTPUT COMMANDS and the /NAME/ or /NAME/+/EXP/
commands listed under LABEL COMMANDS except that it will not
actually read anything. Only the buffer tag information for the
current buffer is changed, and it is changed to the value of /EXP/.
The buffer tag is the track and sector (or relative record)
information associated with the buffer.

The AT command is useful if you want to do a WRITE operation
using an expression or label variable. For example:

ATPROGRAM+3E3
WRITE

will set up the tag information to point to the sector which is +$3E3
bytes from the label "PROGRAM" and then write the contents of the
buffer to that sector.

If no expression is given with the AT command, the current buffer is
marked empty (the tag information is set to question marks). This
is useful sometimes when you want to force ZAP to read a sector in,
even if the track/sector associated with the buffer matches the one
you are reading. For example, you might perform the following
commands:

#+1 AT PROGRAM 3E:01 WRITE

In this example, if the AT command did not precede the label
expression, PROGRAM, it is possible that the new buffer was
already pointing there but that the data in it was not useful for some
reason (you had switched disks or had changed the buffer data in
some way). Putting the AT command first forces ZAP to read a
sector from diskette when it sees the PROGRAM expression.

@Q is an alias for the AT command.

4-35

S/EXP1/,/EXP2/ ..or.. S/EXP1/ ..or.. S,/EXP2/

The S command sets the slot and/or drive for subsequent disk
accesses. The slot and drive number are initially set to those used
to boot the Bag of Tricks diskette. If you want to change them you
may use this command. The first expression, /EXP1/, is the slot
number and may be relative or absolute, ranging in value from 1 to 7
(there must be a disk controller in the slot specified, however).
/EXP2/ is the drive number, 1 or 2, and may be relative or absolute
(for example, S,-1 is valid if the current drive is 2). If /EXP1/ is
omitted, the current slot remains unchanged. If /EXP2/ is omitted,
drive 1 is assumed. You may not change slots or drives with a file
open as this would confuse ZAP.

?/EXP/

The calculator command. The value of the expression is printed on
the command line in hexadecimal and decimal. The expression may
be any valid ZAP expression, including those containing label
variables. ZAP expressions may contain addition and subtraction
operations.

I

Instructions command. ZAP disassembles as many 6502 instructions
as will fit on the screen from the current buffer cursor location
forward. If the end of the buffer is reached, disassembly stops and
the buffer cursor is positioned to $00. The buffer cursor is normally
left so that a subsequent I command will pick up where a previous
one left off. Pressing RETURN will return to the hex/ASCH

display.

LOOP/EXP1/,/EXP2/ ..or.. LOOP/EXP1/ ..or.. LOOP,/EXP2/
0eOPee LOOP - . .

The LOOP command can be used to cause ZAP to repeatedly
execute all, or part of the command line. Only one loop may be in
effect at a time (nested loops are not permitted and will result in
unpredictable behavior). In its simplest form, LOOP with no
operands will repeat the entire command line that precedes it, from
the first character up to the LOOP command, ad infinitum (forever
and a day), or until an error message is displayed (you ran off the
end of the buffer, for example) or until you press any key on the

- 4-36

keyboard. This form is the easiest to use:
UNLOCK NOWRAP SET0 WRITE N LOOP

will zero out the entire diskette (from the cursor on) or an entire
file if a file is open. The command will stop when the "NUMBER
TOO BIG" error occurs as ZAP attempts to read off the end of the
diskette (or file) and wrapping is not permitted.

If /EXP1/ is given, it is used to count the number of times the loop
_is to be performed. It may be any positive absolute number from 1
to +8388607. For example:

#+1 AT *+256. LOOP15.

will fill all 16 buffers with the next 16 sectors (assuming buffer zero
has already been read).

If /EXP2/ is given, it is used to identify the command at which to
start looping when you don't want to start looping with the first
command on the line. The value of /EXP2/ identifies the character
in the command line where the looping is to start. The first
character is numbered 0 and blanks are counted. Consider the
following example:

#0 * §#+1 AT *+256. LOOP15.,5

In this example, character 5 on the command line is the place to
which ZAP is to loop back. This would be the first character of the
#+1 command. A relative expression could also be used:

#0 * #+1 AT *+256. LOOP15.,-18.

This line is identical to the command line given earlier except that a
relative offset from the first operand character of the LOOP
command is given (#+1 is 18 decimal characters back from the first
character of 15.,-18.). This form is preferable if you are writing a
macro since you do not necessarily know where the macro will
appear on the command line and can not be sure of the absolute line
location of anything within your macro. Be careful, however, if you
have any nested macro calls between the LOOP and its starting
point. The macro replacement will change the number of
characters between the start point and the LOOP command.

4-37

HELP/EXP/ ..or.. HELP

The HELP command provides you with a quick, on-line reference to
all of ZAP's commands. There are five screens of help information
available, which can be called up by giving a screen number as an
expression (1 through 5). If no expression is given, the first help
screen (screen 1) is displayed. Press the RETURN key to return to
the hex/ASCH display.

VTOC

If the diskette type is DOS16 or DOS13, the VTOC command will
read track $11, sector $00, the DOS Volume Table of Contents.

CAT

The first sector of the catalog (or file directory) is read. The actual
location of this sector depends upon the type of diskette in use
(DOS, CPM, or PASCAL).

STATUS

The STATUS command displays on the video screen several pieces of
information about current ZAP status. The information presented
includes:

The name of the last OPENed file (or the current open file
name) :
If a file is open...
The current position in record and byte offset form
The current position in track and sector form
The record length in use
The size of the file in records
The size of the file in bytes
The status of ZAP option switches...
Buffer changed or unchanged
Lower case (LC) or upper case (UC) translation
Image or ASCII mode
Locked or Unlocked for WRITEs

Logging or not logging
Wrap allowed or not allowed

4-38

Number of sectors per track

Number of tracks per diskette

The last Look/Verify string, if any

The Look starting position (track/sector/offset)
The last store string, if any

Press RETURN to redisplay the hex/ASCII dump.

END

The END command exits ZAP and returns to the Bag of Tricks main
menu screen.

ZAP ERROR MESSAGES

WRITE PROTECTED

Either ZAP is in LOCK mode and you have attempted to write to the
diskette or your diskette is really write protected. If you still want
to write, verify that ZAP is not locked by entering the UNLOCK
command and check your diskette's write protect notch to make sure
it is not covered. Then enter the WRITE command again.

DRIVE ERROR

Something is seriously wrong with the sector ZAP is trying to read
or write. Possible problems might be:

The diskette door is open or there is no diskette in the drive

The sector has been damaged in some way

You are trying to read/write a 13 sector diskette but you told
ZAP that it was a 16 sector diskette.

If you were trying to read, try the command again. If it still doesn't
work, try reading a neighboring sector or one on a neighboring track
first and then try the read again. If the data in the sector is not
important, set the buffer to zeros and WRITE it. If you get the
same error, you may need to use the INIT utility to reformat the
sector.

4-39

READ ERROR

See DRIVE ERROR.

NO VTOC

The VTOC command is not valid for CPM or PASCAL type diskettes.

SYNTAX ERROR

The command or its operands are invalid or improper in format.
Remember that operands must follow the command with no
intervening blanks. Watch out for macros or label variables defined
by you which might conflict with each other or with ZAP commands.

WARNING: BUFFER CHANGED

ZAP is warning you that, since you read the sector into the buffer,
you have made changes to it. If you don't care and want to throw
these changes away, retype the command you just entered.
Otherwise, WRITE the buffer first.

NOT FOUND

The file you attempted to OPEN was not found in the diskette's
directory (catalog) or contains no sectors. This message also
appears if you attempt to delete a non-existent macro or variable
label. Use the MACROS or LABELS command to find out what
your macros and labels are named.

NO FILE IS OPEN
Several commands are not valid unless a file is open (for example

RLEN, CLOSE, ete.) Use the STATUS command to find out what is
going on.

4-40

LINE OVERFLOWED

During macro replacement the total length of the command line
exceeded 256 characters. No further processing can be attempted.
Check your macros to make sure none of them invokes itself,
thereby infinitely filling up the command line.

SCAN ENDED

A Look command which was originally invoked at the current disk
location has returned to that location after finding no (further)
occurrences of the string.

NOT IN FILE

You have attempted to read/write a sector which is not contained by
the currently OPEN file (this is hard to do but not impossible). If
you must access the sector, CLOSE the file first.

EMPTY BUFFER

Some commands are not valid for buffers which are marked "empty".
Notably, you may not make any references which require a current
track, sector or RSA value. The commands, R+3 or N or P would be
examples of this. If you want to read the sector following the last
sector read, use *+256. instead.

NUMBER TOO BIG

The value of an operand expression exceeds the valid range for that
operand. This could happen, for instance, if you tried to read track
53 (only tracks from 0 to 34 decimal are valid). If your intent was
to cause wraparound, give the number as an expression, relative to
the current location (+53.).

NUMBER TOO SMALL
The value of an operand expression is too small. Most likely, you

have given a negative number or zero and this is not valid. Drive
numbers, for example, must be 1 or 2, not 0 or -197.

4-41

TABLE FULL

Either a macro definition or a label definition has been attempted
and ZAP's corresponding table can not accept any more new entries.
Delete an old entry to make room for your new one and try again.

MATCH

This is not really an error but this message will stop execution of
multiple commands. A Look, Verify, oo COMPARE command was
issued and the strings matched. This message will be suppressed if
any other commands follow the Look or COMPARE command on the
command line.

COMMAND HALTED

This indicates that ZAP was processing commands but you
interrupted it by pressing a key on the keyboard. It is not clear how
far ZAP got with your command(s) before it was stopped.

END OF TRACE

You have attempted to move forward in the trace table but there
are no more entries or you have attempted to back up and their are
no more earlier entries. Use the TRACE command to view the
entire trace table.

BEYOND BUFFER

You attempted a store operation with a string which would have run
off the end of the buffer or you have attempted to position the
buffer cursor outside the $00 to $FF range.

MISSING OPERAND

A command was entered which requires operands (such as S, set

slot/drive) but no operands were given. The command does not
provide a default value.

NOT A DISK

An attempt was made to set the disk slot number (with the S
command) to a slot which does not contain a valid disk controller
card. If ZAP had not checked first, it could have hung when you
next tried to read or write. Verify that the slot you specified is a
disk drive. ZAP checks by compering the third and fifth bytes of
the bootstrap ROM with Apple's standard for a disk controller card.
This technique is identical to that employed by PASCAL.

CLOSE FILE FIRST

Some commands are not meaningful when a file is open because they
would cause ZAP to read sectors which are not within the file.
Examples of these are VTOC and CAT. Likewise, switching drives
with a file open would cause ZAP to assume the file existed in the
same location on the other drive, an unlikely expectation at best.
For this reason, you must CLOSE any open file before switching
drives.

BAD TRK/SEC PTR

Although ZAP attempts to validity check all track/sector values you
give it and issue appropriate messages (such as NUMBER TOO BIG,
ete.) it is possible, during an OPEN for example, that a bad
track/sector pair will be used to perform a read operation. In this
case the message appears. It usually means that you have
attempted to OPEN a file on a CPM diskette, for instance, after
telling ZAP that it is a DOS diskette. Another possibility is that
some directory or track/sector list pointer is invalid. You should
not see this message very often (hopefully).

DOES NOT MATCH
The result of a Verify or COMPARE command is that the strings or

buffers do not match. In the case of COMPARE, the buffer cursor
indicates the location of the mismatch.

OFF END/NO WRAP

An attempt has been made to move past the bounds of the diskette
or an open file (by asking for a sector which is prior to the beginning
of the disk/file or past the end) and the NOWRAP option has been
set. The offending command has been aborted.

BAD DATA FORMAT

An MSWAP or LSWAP command has determined that the data in the
sector buffer is not a valid macro or label table. These commands
store a checksum byte in the data they produce to insure the
integrity of their table formats. Do not change the data in any way
while it is in the sector buffer. If you have not changed the data,
then it was probably damaged when it was written to or read back
from a diskette.

SUMMARY OF ZAP COMMANDS

INPUT/OUTPUT COMMANDS

/EXP/ SET BUFFER CURSOR

+/EXP/ MOVE FORWARD IN BUFFER, DISK, OR
FILE

-/EXP/ MOVE BACKWARD IN BUFFER, DISK, OR
FILE

R/TRK/,/SEC/ READ TRACK, SECTOR (FILE CLOSED)

R/REC/,/BYT/ READ RECORD, BYTE (FILE OPEN)

WRITE/TRK/,/SEC/ WRITE TRACK, SECTOR (FILE CLOSED)
WRITE/REC/,/SEC/ WRITE RECORD, BYTE (FILE OPEN)

N/EXP/ NEXT SECTOR (PLUS /EXP/ SECTORS)
P/EXP/ PREVIOUS SECTOR (MINUS/EXP/SECTORS)
% INDIRECT READ TRACK, SECTOR

BUFFER MODIFY COMMANDS

:/STR/ STORE STRING INTO BUFFER
SET/STR/ MULTIPLE STORE

&/STR/ LOGICAL AND OPERATION

O/STR/ LOGICAL OR OPERATION

X/STR/ LOGICAL EXCLUSIVE OR OPERATION

444

COMPARISON COMMANDS
L/STR/ LOOK FOR STRING

V/STR/ * VERIFY STRING MATCHES BUFFER
COMPARE/BUFFER/ COMPARE BUFFERS

OPTION SWITCH COMMANDS

LC DISPLAY LOWER CASE AS IS

ocC TRANSLATE LOWER CASE TO UPPER
CASE

IMAGE PRINT CHARACTERS IN IMAGE FORM

ASCH STANDARD ASCH TRANSLATION

LOCK PREVENT WRITE OPERATIONS

UNLOCK ALLOW WRITE OPERATIONS

DOS16 USE DOS 3.3 SKEW TABLE (16 SECTOR)

DOS13 USE DOS 3.2 OR 3.1 SKEW TABLE (13
SECTOR)

CPM USE CPM SKEW TABLE (16 SECTOR)

PASCAL USE PASCAL SKEW TABLE (16 SECTOR)

WRAP ALLOW DISK OR FILE WRAPAROUND

NOWRAP PREVENT DISK OR FILE WRAPAROUND

FILE COMMANDS

OPEN/STR/ OPEN A FILE

RLEN/EXP/ SET RECORD LENGTH

CLOSE CLOSE FILE

WHERE OPEN FILE CONTAINING SECTOR

PRINTER COMMANDS

PR#/EXP/ SET PRINTER SLOT NUMBER
PRINT COPY SCREEN TO PRINTER
DUMP/EXP/ DUMP SECTOR(S) TO PRINTER
IDUMP DUMP INSTRUCTIONS TO PRINTER
NOTE/LINE/ PRINT COMMENT LINE

LOG LOG ALL CHANGES

NOLOG STOP LOGGING CHANGES

BUFFER COMMAND
#/EXP/ SELECT BUFFER

MACRO COMMANDS

(/NAME/ /TEXT/) DEFINE MACRO

/NAME/ INVOKE MACRO
//NAME/ DELETE MACRO
MACROS LIST ALL MACROS

MSWAP ‘SWAP MACRO TABLE WITH BUFFER

' LABEL COMMANDS

LABELS ‘DISPLAY ALL LABELS

=/NAME/ DEFINE LABEL

//NAME/ DELETE LABEL

/NAME/ POSITION TO LABEL

/NAME/+/EXP/ POSITION TO LABEL PLUS EXPRESSION
LSWAP SWAP LABEL TABLE WITH BUFFER

TRACE COMMANDS

TRACE DISPLAY TRACE TABLE
< BACK UP IN TRACE
> ADVANCE IN TRACE

MISCELLANEOUS COMMANDS

AT/EXP/ POSITION BUT DO NOT READ
AT MARK BUFFER EMPTY
S/SLOT/,/DRIVE/ SET DISK SLOT,DRIVE

?/EXP/ CALCULATOR

I DISASSEMBLE TO SCREEN
LOOP/CNT/,/LOC/ REPEAT LINE

HELP/EXP/ SHOW HELP SCREEN

vTOoC READ DOS VTOC

CAT READ FIRST CATALOG SECTOR
STATUS SHOW ZAP STATUS VARIABLES
END EXIT ZAP

ALPHABETICAL LISTING OF ZAP COMMANDS

The following list presents the ZAP commands in alphabetical order
followed by the page number where a complete description of each

command may be found.

-# 427

% 4-18

& 4-19

() 430
+/EXP/ 4-16
/ 4-30,4-33
J/EXP/ 4-16
: 4-18

= 4-33

? 4-36

Q 435
ASCH 4-21
AT 4-35
CAT 4-38
CLOSE 4-24
COMPARE 4-20
CPM 4-22
DOS13 4-22
DOS16 4-22
DUMP 4-25
END 4-39
HELP 4-38
I 4-36
IDUMP 4-26
IMAGE 4-21
L 4-20

LC 4-21
LOCK 4-22
LOG 4-26

LOOP 4-36
LSWAP 4-34
MACROS 4-30
MSWAP 4-31
N 4-17
NOLOG 4-26
NOTE 4-26
NOWRAP 4-23
0 4-19
OPEN 4-24

P 4-18
PASCAL 4-22
PR# 4-25
PRINT 4-25
R 4-17
RLEN 4-24

S 4-36

SET 4-19
STATUS 4-38
TRACE 4-34
UucC 4-21
UNLOCK - 4-22
V 4-20

VTOC 4-38
WHERE 4-25
WRAP 4-23
WRITE 4-17
X 4-19

CHAPTER 5
FIXCAT — By Don Worth

The FIXCAT utility may be used to perform a number of functions
for all standard DOS diskettes (13 or 16 sector):

- Check a diskette's catalog and file pointers for integrity
- Check for one file overlapping another

- Produce a detailed report on the contents of a diskette
- Detect and correct errors in the VTOC or CATALOG

- Free up DOS tracks for use with files

- Search the diskette for lost files and recover them

The general way in which FIXCAT works is to make corrections only
to the VTOC and catalog. Although some errors may be detected in
track/sector lists or data sectors, these areas will never be modified
by FIXCAT. Further, all corrections made by FIXCAT are made to
an in-memory image of the catalog track, allowing the user to abort
the entire operation at any time along the way. Only after all
operations and checks are complete is the user given the option to
write the new CATALOG track image back to the target diskette.
This makes FIXCAT relatively safe for use by beginners.

The following tutorial will help you to understand FIXCAT's
operation. In this tutorial you will run FIXCAT against the practice
diskette to see if there are any errors in its catalog or VTOC.

FIXCAT TUTORIAL

Boot up the Bag of Tricks diskette, select the FIXCAT utility from
the main menu, and follow along with the tutorial.

The first message displayed on your screen is:
FIXCAT - FIX CATALOG UTILITY

DISPLAY ON WHAT SLOT?
0

Here, FIXCAT is asking you where you want its messages to be
printed. If you plan to use the Apple's screen, just accept the
prompt of 0. If you want to have the output go to a printer, enter
the slot number of the printer.

There are two things to notice about this display. One is that
FIXCAT will almost always provide you with a "prompt". This
means that FIXCAT is guessing what your usual response will be to
each of its questions. This usual answer is printed on the input line
and the cursor is left over the first letter of the prompt string. If
you agree with FIXCAT, and want to use the prompt as your answer
to one of its questions, just press the RETURN key. If you want to
give a different answer, merely type over FIXCAT's prompt with
your own. There are two reasons for having prompts. One is that
this practice helps you to figure out a question by offering a typical
answer. The second reason involves the AUTOMATIC TIMEOUT
feature, which is discussed next.

Notice that another message appears on the current display:

- TYPE END AT ANY TIME TO ABORT -

FIXCAT is giving you an escape hatch. Any time FIXCAT is asking
you a question you may answer by typing END. FIXCAT will
immediately abort everything it has done so far and return to the
Bag of Tricks main menu screen.

A word of caution about the DISPLAY ON WHAT SLOT? question.
If your printer interface does not echo what is being printed on the
Apple screen as it prints it, you may have some difficulty in running
FIXCAT with a printer. In this
case you will have to look at the
printer to see the text of the
questions. Owners of the Apple
Serial Card should set its option
switches so that the 40 column
with Apple video option is used
(DIP switches 5 and 6 om). Of
course, you will never have a
problem if you answer "0" to this
question. Do this now, if you
have not already done so.

MAKES A DISKETTE UNUSABLE...

5-2

The next question presented is:

AUTOMATIC TIMEOUT IN SECONDS?
(0 TO 255 SECONDS, 0 MEANS NO TIMEOUT)
0

FIXCAT ecan run in two different modes. In the normal mode, each
time a question is presented it will wait indefinitely for your answer.
In the AUTOMATIC mode, it will wait for your answer a specified
number of seconds and then, if you still haven't responded, it will
assume you mean to accept its "prompt" answer. This is the other
reason for having prompts on every question. Most of the time you
can, with few exceptions, use all of the prompt answers, allowing
FIXCAT to run by itself. For example, if you had a clobbered
diskette, you could set FIXCAT up, give a 1 second timeout value
for the above question, and then go do something else while FIXCAT
works on your diskette. When all operations are complete, FIXCAT
will wait for you to say whether you want to write the corrected
CATALOG track back to your diskette. Longer timeout values may
be used if you think you may want to change any answers as the
questions go by, but don't dawdle! By the way, if you have set a
non-zero timeout value you can stop the timer on any question by
hitting a key. FIXCAT will then wait indefinitely for that (and only
that) answer.

At this point, accept the AUTOMATIC TIMEOUT prompt of 0 (no
timeout) by pressing RETURN. The next screen looks like this:

WHAT FORMAT IS YOUR DISKETTE?

13 SECTOR (DOS 3.1 OR DOS 3.2) ..OR..
16 SECTOR (DOS 3.3)

16

This question helps FIXCAT to
determine which RWTS to use.
If you are using a 16 sector
practice diskette, accept the
prompt. If you are using a 13
sector diskette, type 13 and
press RETURN.

... BUT FIXCAT RESTORES TvE
CATALOG , AUTOMATICALLY !

5-3

FIXCAT will now ask you:

READ EXISTING CATALOG FROM DISKETTE
OR START FROM SCRATCH? ("R" OR "S")
R

It is time to insert your Bag of Tricks practice diskette (See Chapter
1) into the diskette drive. Use the drive you used to boot the Bag of
Tricks diskette (you must remove the Bag of Tricks diskette,
FIXCAT will not need it again unless you type END or until it
completes operation).

FIXCAT is now asking you, in essence, whether you are just checking
your diskette's integrity or if its CATALOG is destroyed and must be
rebuilt from scratech. Ordinarily you will answer this question with
"R", read the existing CATALOG. This will cause FIXCAT to read
your catalog track into memory and perform all future operations on
this memory image. If you respond "S", FIXCAT will start with a
zeroed catalog track image. The only time you would use this latter
option is when you know that the entire CATALOG track is lost (or
you have already reformatted the entire track without preserving
data using the INIT program).

Respond "R" (accept the prompt). FIXCAT will read the diskette's
catalog track (the drive turns on) and then begin checking it for
errors. Some messages will appear on the screen (probably too fast
for you to see them, unless an error is found):

CHECKING FORMAT OF VTOC FOR VALIDITY ...
CHECKING FORMAT OF CATALOG ...
Then the following screen will appear:

DOES THIS DISKETTE CONTAIN A DOS IMAGE
ON TRACKS 0, 1, AND 2?
Y

Normally the answer to this question would be yes. All standard
Apple DOS diskettes contain an image of DOS on their first three
tracks. If you don't plan to boot the diskette, however, you can
steal 2 of these tracks back from DOS and use them for more file
space (using track 0 is not reliable, since a track/sector list can not
reside there). If you wanted to recover tracks 1 and 2 for your own

5-4

use, you could answer N to the question (or if you had previously run
FIXCAT against this diskette to do this). For more information on
this procedure, see Chapter 6. In this case, our practice diskette
does contain a DOS image so accept the prompt of "Y".

FIXCAT will now check each file it finds in the catalog for validity.
You will see messages like these seroll by:

FILE: HELLO

TRACK/SECTOR LIST: T$12 S$0F
DATA: T$12 S$0E

TOTAL SECTORS ALLOCATED TO FILE: $0002

These are the messages for one file, HELLO (the name might be HI
THERE if you have previously run through the ZAP tutorial). The
location of the sector that contains the track/sector list is given as
track $12, sector $0F. The contents of the track/sector list sector
are then printed, forming a list of all the data sectors in the file. In
this case there is only one data sector, at track $12 sector $0E.
Thus, counting the track/sector list sector and the single data
sector, this file has $0002 sectors. Similar messages will appear for
all the other files on the practice diskette.

At this point the existing catalog and files have been checked for
validity and have passed muster (if an error had occurred, an error
message would have appeared). FIXCAT now asks:

SCAN FOR LOST OR DELETED FILES?
Y

There should be no deleted files on this diskette (it was freshly
INITed) and certainly no lost files. The search for lost files takes a
few minutes, so we won't bother this time. Change the prompt
answer to "N" and press RETURN,

FIXCAT now checks the VTOC free sector bit map against one it has
been compiling while checking your files. These messages appear:

72 SECTORS IN USE
488 SECTORS FREE

NO ERRORS IN VTOC BIT MAP WERE FOUND

You are told how many sectors of the diskette are being used by
files, the catalog, and DOS and how many are left for future use. If
FIXCAT's computed map matches the one on your diskette, the NO
ERRORS... message appears.

These final messages now appear:

PROCESSING COMPLETED.

NO CORRECTIONS TO CATALOG ARE REQUIRED

PRESS RETURN TO CONTINUE
Since there were no errors detected during FIXCAT's operation,
there is no need to write the memory image of the catalog track
back to your diskette. If an error had occured, FIXCAT would have
asked you if you wanted to rewrite the catalog track. Remove the

practice diskette, replace it with the Bag of Tricks diskette, and
press RETURN.

This concludes the FIXCAT introductory tutorial. Additional
FIXCAT tutorials, in which DOS image tracks are reclaimed and a
blown catalog track is reconstructed, are presented in Chapter 6.

FIXCAT MESSAGES

This section will explain the messages which can be displayed by
FIXCAT along with a brief explanation of each. The messages will
be covered here in the order in which they might appear in FIXCAT.

DISPLAY ON WHAT SLOT?
If you wish to have FIXCAT display its messages only on the Apple

screen, enter 0 (the default). If you want them to be printed on a
printer, give the slot number of your printer here.

5-6

AUTOMATIC TIMEOUT IN SECONDS?

Enter 0 (the default) if you want FIXCAT to always wait for your
response to each question it asks. If you specify a number of
seconds, on the other hand, each time FIXCAT prompts you for a
response, it will wait that number of seconds before taking the
default as your answer.

WHAT FORMAT IS YOUR DISKETTE?

If your diskette is 16 sector format, type 16 (the default). If it is an
older 13 sector diskette, type 13.

READ EXISTING CATALOG FROM DISKETTE
OR START FROM SCRATCH? ("R" OR "S")

If your catalog is at all intact, specify R (the default) to have
FIXCAT use it as a basis for its operations. Only if there is not a
single valid sector left in the catalog should you specify "S". In this
case, FIXCAT will start with a zeroed out catalog track and will
build it up from scratch.

CATALOG TRACK MAY REQUIRE RE-INIT

While attempting to read your catalog track into its memory
buffers, FIXCAT encountered an I/O error. If the error is merely a
read error, it will be taken care of when the corrected track is
rewritten to the disk. If the error is due to damaged sector
formatting, then an I/O error will occur when the final write
operations are attempted. In this case, it will be necessary for you
to use the INIT utility first, to correct the sector formatting, before
attempting to run FIXCAT again.

CHECKING FORMAT OF VTOC FOR VALIDITY ...
FIXCAT is validity checking the VTOC in memory. This could be a
copy of the VTOC it read from your diskette or it could be a zeroed

sector if you answered the above question "S". The following
messages may appear if errors are detected.

5-7

LINK TO CATALOG BAD

The track/sector pointer to the first catalog sector from the VTOC
(at offset +1, +2) is invalid. You will be asked if you want it fixed.
Reply Y or N.

VERSION NUMBER BAD

The DOS version number at +3 in the VTOC is invalid for this type of
diskette. If you want FIXCAT to fix it, reply Y.

BAD VOLUME NUMBER

The volume number stored at +6 in the VTOC does not match that of
the diskette. Reply Y to have FIXCAT correct it.

TSL ENTRIES/TSL BAD

The number of data sectors which can be described by a
Track/Sector List (TSL) is incorrect. This constant is at +$27 in the
VTOC. Type Y to have it fixed. .

LAST TRACK ALLOCATED BAD

The last track allocated value is not a valid track number. Type Y
to have FIXCAT correct it ($11 will be used).

ALLOCATION DIRECTION BAD

The VTOC indicator of the direction of allocation is not a +1 or a -1.
Reply Y to have a +1 stored there.

TRACKS PER DISK BAD

The tracks per disk value is not 35. Type Y to have it changed.

5-8

SECTORS PER TRACK

The sectors per track value is not 16 (or 13 as the case may be).
Type Y to fix it.

SECTOR SIZE BAD

The sector size should be 256. It is not. Reply Y to set it to 256.

CHECKING FORMAT OF CATALOG ...

FIXCAT is validity checking all of the catalog sectors for
formatting errors. The following messages may occur if an error is
detected.

CATALOG LINK BAD

A track/sector pair at +1,+2 in a catalog sector does not point to the
next catalog sector. The track and sector number of the offending
catalog sector are printed with this message. Type Y to fix the
pointer.

BAD TSL POINTER FOR FILE

A track/sector list pointer in a file descriptor entry contains an
invalid track or sector number. The name of the file is displayed
and you will be asked if the entry should be deleted. If youreply Y,
you may still recover the file (if it really exists) using the SCAN
FOR LOST FILES option of FIXCAT.

DOES THIS DISKETTE CONTAIN A DOS IMAGE
ON TRACKS 0, 1, AND 2?

If this is a standard, bootable diskette, reply Y (default). If you
want to recover tracks 1 and 2 for your own use and never boot this
diskette again, reply N. Also reply N if you have previously
recovered these tracks using FIXCAT.

5-9

FILE: filename

FIXCAT is cheeking this file, found in the catalog, for validity and is
using it to build its sector allocation map. The following messages
may appear.

TRACK/SECTOR LIST: T$nn S$nn

FIXCAT is about to read a track sector list sector for the file. The
location of the list on the diskette is given.

UNABLE TO READ FILE. DELETE IT?

FIXCAT was unable to read the first track/sector list sector because
of an 1/0 error. If you reply Y, the file will be deleted from the in-
memory image of the catalog. You may be able to recover the file
later using the SEARCH FOR LOST FILES option (assuming that the
TSL wasn't really where the catalog entry said it was).

DATA: T$nn S$nn T$nn S$nn ...

This is a list of the data sectors contained by this file, as deseribed
by this TSL sector.

UNABLE TO COMPLETE PROCESSING FOR FILE

FIXCAT was unable to read a subsequent track/sector list because
of an I/0 error. No further checking for this file will be done. This
could mean that the TSL link pointer in the current TSL is bad or
that an I/O error has crept into the second TSL. FIXCAT will mark
the remaining data sectors of the file free for use by other files, so
you may not want to rewrite the catalog track.

BAD TRACK/SECTOR POINTER
One of the track/sector pairs, describing a data sector, in the
track/sector list is not valid. It is the last one printed on the

DATA: message. You may have to use ZAP to correct it, assuming
you can figure out what it is supposed to be.

5-10

TOTAL SECTORS ALLOCATED TO FILE: $nnnn

Given here is the count of the total number of sectors belonging to
the file, including TSL sectors.

WARNING: ONE OR MORE SECTORS IN THIS
FILE OVERLAP A PREVIOUSLY PROCESSED
FILE. COPY THIS FILE TO ANOTHER DISK,
DELETE IT, AND RERUN FIXCAT.

While marking the sectors of this file "in use" in the VTOC freespace
map, FIXCAT noticed that a previously processed file, or the DOS
image or catalog track itself, had allocated these sectors for its use.
It is not clear who got there first
or how much of the file may be
damaged. You should halt ex-
ecution of FIXCAT, copy this
file to another diskette and
delete it from this one. This
will free its sectors (and prob-
ably some of the other file's as
well). To correct this, rerun
FIXCAT against this original
disk. Repeat this process each
time you see the above message.
You will then have to use ZAP or
some other program to examine
the affected files carefully for OVERLAPPING FILES
loss of data.

EXISTING SECTOR COUNT WRONG. FIX IT?

FIXCAT's count of allocated sectors for the file does not match that
of the catalog entry. Type Y to change the catalog entry.

5-11

SCAN FOR LOST OR DELETED FILES?

If you do not think you have any missing files, reply N (the default).
If you wish to have FIXCAT search the entire diskette for
"unattached" track/sector list sectors, type Y. One word of
warning, however. FIXCAT may find some old files you don't want
back, such as previously deleted ones. These old files may be
somewhat "moth eaten" in that some of their sectors may have been
appropriated for use by other files and are overwritten. While the
scan is in progress, FIXCAT will display the first data sector of each
file it finds to ask you if you really want it recovered. The
following messages will occur during a scan.

SCANNING DISK FOR LOST FILES

FIXCAT is reading every sector on the diskette from track 1 on for
what might be a track/sector list. This takes time so be patient.

CATALOG IS FULL. SCAN HALTED

A lost file was found but there is no more room in the catalog to add
an entry. The scan is prematurely stopped.

FILE LOCATED. FIRST DATA SECTOR:
XXXXXXXXXXXXXXXXXXXXXXXX eeeee
XXXXXXXXXXXXXXXXXXXXXXXX eeceececccee
XXXXXXXXXXXXXXXXXXXXXXXX cecesecesces

ete.

A track/sector list has been located which has no corresponding
entry in the catalog. Using the list, the first data sector has been
read and some of it is displayed on the screen in hexadecimal and
character. Use this display to try to identify the file so you can
give it a recognizable name.

UNABLE TO DUMP FIRST SECTOR

FIXCAT got an I/O error attempting to read the first data sector of
the file, so no hex/character dump could be done.

5-12

RECOVER THIS FILE?

If you think that this is a file you want, reply Y (the default). If the
file looks like an old deleted file you no longer wanted, reply N. If
you reply Y, the following messages may appear.

PLEASE GIVE A NAME TO THE FILE.

Using the hex/character dump, try to make up a suitable name for
the recovered file. If you can't think of a name, FIXCAT will
prompt you with a unique one.

WHAT TYPE OF FILE IS IT? (T,l,A,B,R,S)

If you were able to identify the file, you probably know its file type
as well. If not, FIXCAT will prompt you with a pretty good guess.
You'll find that FIXCAT will be correct in its guess about 95% of the
time. If the wrong file type is given and you later detect this (by
trying to load an Integer basic file into Applesoft, for example) you
can delete the file and rerun FIXCAT, supplying a different type this
time.

FILE: filename

ete.

At this point FIXCAT will process the file, exactly as it does files
which were already in the catalog. See the descriptions of these
messages earlier for more information about them.

nnnnn SECTORS IN USE

FIXCAT is analyzing its completed VTOC freespace map. There are
nnnnn sectors allocated to files, the catalog, or the DOS boot image.
nnnnn SECTORS FREE

FIXCAT has determined that there are nnnnn sectors left for future
allocation by files.

5-13

NO ERRORS IN VTOC BIT MAP WERE FOUND

The computed VTOC freespace map image in FIXCAT's buffer
matches the one on your diskette.

ONE OR MORE ERRORS WERE FOUND IN THE
VTOC BIT MAP. CORRECT THEM?

FIXCAT's computation of the freespace map does not match the one
on your diskette (this could be because you recovered a file or it
could be your diskette has some "lost" sectors). If you want to
update the VTOC freespace map with FIXCAT's corrected version,
reply Y. Note that answering the DOS ON TRACKS 0, 1, AND 2
message incorrectly for your diskette will produce this message.

PROCESSING COMPLETED.

All validity checks have been completed against your diskette.
FIXCAT is ready to write the corrected catalog track image back to
the diskette. Up to this point it has not written to your diskette in
any way.

APPLY ACCUMULATED CORRECTIONS TO THE
VTOC/CATALOG TRACK?

Reply Y if you want the corrections you have authorized up to this
point to be applied to the catalog track on your diskette. Reply N if
you want to forget the whole thing and not change your diskette
after all.

NO CORRECTIONS TO THE CATALOG ARE REQUIRED

No changes were ever made to the memory image of the catalog
track so there is no point in writing it back to the diskette.
CATALOG TRACK DOES REQUIRE RE-INIT

An I/O error was encountered while trying to write the catalog track
image back to the diskette. The most likely cause is that the

formatting for one or more sectors on the catalog track is damaged.
You will have to run the INIT utility to correct this and then rerun

FIXCAT.

5-14

ERROR (T$nn S$nn): BAD TRACK/SECTOR POINTER

FIXCAT has attempted to read a sector whose track or sector value
is out of range. The offending values are printed in hex. This
message is usually associated with another FIXCAT error message,
which will immediately follow it.

ERROR (T$nn S$nn): 1/0 ERROR

FIXCAT got an input/output error trying to read or write the
track/sector indicated.

ERROR (T$nn S$nn): WRITE PROTECTED

FIXCAT was trying to write back the corrected catalog track when
it determined that the write-protect noteh of the diskette is
covered. No write could be performed.

THIS CAT FIXCAT CANT F(X...

5-15

CHAPTER 6
ADVANCED TUTORIALS

IDENTIFYING AND CORRECTING FORMATTING ERRORS

Errors in diskette formatting are fatal. If any portion of either an
address field or a data field is damaged, even a single bit out of
place, DOS will not be able to read the sector in question. If the
error occurs in the data field portion of the sector, the data will be
lost but the sector may be reused. DOS will be able to write to that
sector because it need only find the address field to perform a write
operation. An error in the address field of a sector prevents DOS
from writing to it, and the sector must be reformatted.

Using TRAX's verify command (V) you can quickly locate I/O Errors.
Simply boot the Bag of Tricks diskette and select TRAX from the
menu. After inserting the suspect diskette in the drive, press the R
key to read and analyze the first track (track 0). Noting any errors,
press the V key to verify the diskette. TRAX will beep and display
its analysis each time an error occurs on a particular track. Make a
note of the location and nature of each error and continue the
verification process by pressing the V key.

If TRAX locates an error, it will be one of three types.

1. You may see the word DAMAGED in one or more locations on the
screen. The line that the message is on corresponds to the
sector that is damaged and you may take appropriate action.
Unfortunately, while you probably can reformat the sector, the
data is most likely not recoverable.

2. Another possibility is that the normal TRAX display will be
generated but some portion of the display will be in inverse. The
location of the information that is in inverse will tell you what
part of which sector is damaged. In this case, however, the data
may be recoverable and you should refer to the LOCATING AND
FIXING AN I/0 ERROR tutorial.

3. The third possibility is that the entire track has been damaged, in
which case the message UNABLE TO INTERPRET DATA will be
displayed.

To recap, if an error occurs in the data field portion of a sector, you
should follow the procedure outlined in the LOCATING AND FIXING
AN I/0 ERROR tutorial. An error in the address field portion of a
sector or a completely destroyed track require reformatting. After
attempting to recover the data (see the above mentioned tutorial
and the Appendix) you can use INIT to reformat the track in
question. Any valid data on the track can be preserved, allowing
you to, in effect, reformat the damaged sectors.

IMPROVING ACCESS TIMES FOR DOS DISKETTES

Even though much of your work on the Apple Computer is not time
critical, it is nevertheless desirable to speed up execution time. Disk
access time is the major problem in a great many tasks. INIT
provides you with a simple way to decrease the time required to
read programs from diskette. The method used is to reorder the
sectors on the diskette. This procedure is referred to as reskewing.

By rewriting your diskette using an optimal skewing pattern you can
expect between 25 and 45 percent improvement when loading
Binary, Integer or Applesoft files. While reskewing a diskette
doesn't speed up all operations (accessing text files is only
marginally affected by skewing patterns), reskewing is simple to do
and causes no compatability problems that often accompany both
hardware and software products that increase the Apple's capa-
bilities. The only difficulty with reskewing is that the copy program
on the DOS 3.3 Master assumes a conventional skewing and will not
perform as fast on a diskette that has been reskewed.

Boot the Bag of Tricks diskette and select the INIT program. The
INIT screen display will appear (it will look like Figure 3.1 of
Chapter 3). Remove the Bag of Tricks diskette and insert the
diskette you wish to reskew. If you have two disk drives you may
use either drive. You are going to reskew the data portion (tracks
03-34) of a diskette. You should see the cursor (>) on the top line
of the data entry portion of the sereen. The line will normally look
like this:

DISK SECTORING >16

Using the arrow keys, select the number of sectors that matches the
diskette you have placed in the disk drive (13 for DOS 3.1, 3.2, 3.2.1
and 16 for DOS 3.3). This is important, although the program can
determine if you have made an error. When you have made your
selection press the space bar to move to the next line. You should
see this:

DISK FORMAT > DOS
This should be set to DOS. If it isn't, do so using the arrow keys.
Then proceed to the next line using the space bar. You should see
this:
PRESERVE DATA > YES
Make sure you answer YES, because otherwise you could lose the
data on your diskette. Proceed to the next line where you should
see this:
SKEW DIRECTION > DESCENDING
The last section of Chapter 3 explains why a DESCENDING skew is
optimal for a DOS diskette. Move to the next line, where you
should see this:
SKEW FACTOR >02
The optimal skew is 09 and you should now make that selection using
either arrow key. Move to the next line when done, where you
should see this:
SLOT >06
Select the slot number appropriate for your system (i.e., the slot
your disk controller card is plugged into). Continue on and select
the appropriate drive number on the next line.
DRIVE >01

Make sure you are selecting the correct drive, then move to the next
line.

VOLUME NUMBER > DEFAULT

6-3

It would be best to use DEFAULT, which will use the volume number
already on your diskette. Under some circumstances different
volume numbers on the same diskette could cause a problem, so you
should also reskew the first three tracks (0-2) if you wish to change
the volume number from its current value. See the tutorial,
CHANGING THE VOLUME NUMBER OF A DISKETTE. When ready,
proceed to the next line.

STARTING TRACK >00-DEC 00-HEX

The correct value is 03, because the skewing you have selected does
not work efficiently during the boot process. When you have
changed the starting track number to three, move on to the last line.

ENDING TRACK >34-DEC 22-HEX

The correct value here is 34 (22 Hex), which is the last track on your
diskette. Please check to see that you have made the correct
entries. Your screen should match the one below. If you see any
mistakes, simply use the space bar to move the cursor to the
appropriate line and change the value (using the arrow keys) to its
correct value.

* * INIT * *

DISK SECTORING [same as before]
DISK FORMAT DOS
PRESERVE DATA YES
SKEW DIRECTION DESCENDING
SKEW FACTOR (02}
SIOT [your choice]
DRIVE [your choice]
VOLUME NUMBER DEFAULT
STARTING TRACK 03-DEC 03-HEX
ENDING TRACK 34-DEC 22-HEX

When you are ready to proceed, press the RETURN key. You will
then see the following prompt near the bottom of the screen.

IS THE ABOVE OK ? >YES

6-4

Assuming you have already carefully checked the data you entered,
simply accept the YES prompt by pressing RETURN. You should
now see these four lines at the bottom of the screen.

DATA WILL BE PRESERVED
INSERT DISKETTE IN SLOT 0X DRIVE 0X
PRESS RETURN TO CONTINUE
PRESS ESCAPE TO ABORT

Double check that your diskette is in the slot and drive indicated and
that the door is closed. Then press the RETURN key to begin the
reskewing process. You will hear the disk arm recalibrate as would
proceed a normal DOS "INIT" command. Shortly thereafter you will
see a prompt line indicating which track is being processed. The
prompt will change to indicate which function is being performed.
The whole procedure should take less than 75 seconds, at which time
you will have an optimally skewed diskette. The prompt line EXIT
PROGRAM ? will appear, indicating the completion of a successful
initialization.

CHANGING VOLUME NUMBERS

Changing the volume number on a diskette normally requires
initializing a new diskette and transferring all files from the old
diskette onto the new one. Using the INIT program, changing the
volume number can be accomplished much more quickly and easily.

Refer to Chapter 3 or to the preceding tutorial if you are not
familiar with the INIT program. Set up the inputs to INIT as follows
(this tutorial assumes a 16 sector diskette):

* * INIT * *

DISK SECTORING 16
DISK FORMAT DOS
PRESERVE DATA YES
SKEW DIRECTION DESCENDING
SKEW FACTOR 02
SIoT [your choice]
DRIVE [your choice]
VOLUME NUMBER [your choice]

STARTING TRACK
ENDING TRACK

00-DEC OO-HEX
34-DEC 22-HEX

If you wish to reskew your diskette in addition to changing the
volume number, please see the preceding tutorial on improving
access time. The normal skew is 02, but you may wish to change
this value to 09 to obtain the optimal skew. Note that when you
change the volume number you must change all tracks on the
diskette (0 to 34), because different volume numbers on the same
diskette could, under some circumstances, cause a problem. If you
are also reskewing, you may wish to make two passes over the
diskette, one for tracks 0-2 (skewed at 2 DESCENDING for DOS 3.3)
and) another for tracks 3-34 (skewed at 9 DESCENDING for DOS
3.3).

Check your input data carefully and make changes if necessary.
Make sure that your diskette is in the slot and drive indicated and
that the drive door is closed. Then press the RETURN key to begin
the initialization process. When INIT completes, run FIXCAT, as
described in Chapter 5, to fix the volume number in the VTOC.

FINDING THE A AND L VALUES OF A BINARY FILE

Sometimes it is useful to know what address (A) and length (L)
values were used to BSAVE a B type DOS file. To do this you can
use ZAP to examine the file.

You may even wish to modify the A value of the file. If the binary
data was stored from an address different from where it is intended
to be loaded, you must specify the A operand when issuing the
BLOAD or BRUN command. Using ZAP, however, you can change
the address in the binary file, eliminating the need to specify the A
operand when loading.

Boot up the Bag of Tricks diskette, select ZAP, and then insert the
practice diskette once ZAP is "up".

You can now use the OPEN command to find the binary file.
OPEN'BINARY FILE'

In the case of the practice diskette, the first four bytes of
hexadecimal displayed are:

D0033000
6-6

This corresponds to a BSAVE command of:
BSAVE BINARY FILE,A$03D0,L$0030

Notice that the address (A) is stored in the first two bytes of the file
(in reverse byte order) and the length (L) follows it, also reversed.
To change the address, use this command:

0:D002

Here the address has been changed to $02D0. To finalize the
change you must rewrite the sector to disk:

UNLOCK WRITE LOCK

Now, whenever BINARY FILE is BLOADed it will, by default, be
loaded at $02DO0.

PATCHING DOS USING ZAP

ZAP comes in quite handy whenever you want to patch DOS directly
on the diskette. The DOS image which is loaded into your machine
when you boot a standard DOS diskette resides on the first three
tracks (0, 1, and 2). By ZAPping this image, you are changing the
DOS that will be loaded when you boot the diskette. Below are
several examples of how to patch DOS to do interesting things.

Each time you have identified a patch you want to make to DOS, you
must first locate the patch in the memory copy of DOS and test it
there. For example, suppose, after reading Beneath Apple DOS's
Chapter 8 (DOS Program Logic), you have decided it would be nice
to be able to remove the limitation on the L operand of the BSAVE
command where only up to 32K chunks of memory can be saved (you
have in mind saving 48K, for example). First you found the table of
valid keyword ranges at the top of page 8-20 in Beneath Apple DOS.
Then, by comparing this to the DOS in your 48K Apple, you
determined that the 32767 high limit for the L keyword in this table
is at $A963.

6-7

If you now look up $A900 in the DOS LOCATION TABLE on the
Beneath Apple DOS reference card (under RELOCATED ADDRESS)
you will see that the disk sector containing this page is on track 01,
sector 08. Therefore, in order to change the 32767 value to 65535
on the disk, you must read track 01, sector 08, position to +$63
($A963, remember?) and store $FFFF over the $FF7F. Then WRITE
the updated sector and the patch has been applied.

In each case below, the patch addresses are given as well as the ZAP
commands necessary to apply them. A process similar to the one
just described can be used to make each patch. In each case the
write flag is left in the UNLOCKaed state, and you may wish to issue
the LOCK command after all the patches you want to make are
completed.

The recommended commands below include the LOG command.
Whenever you patch DOS, it is recommended that you print out an
audit trail of your changes by using the LOG command (if you have a
printer) and keep it on file. If, at some later date, a new version of
DOS comes out and you want to "migrate" the patches over to the
new version, you will have a hardeopy list of what you have done to
DOS.

AVOIDING RELOAD OF LANGUAGE CARD

See Beneath Apple DOS, page 7-2. $BFD3 must be changed from
8DO0EO to EAEAEA. $BFD3 is in track $00, sector $09 at +$D3.

LOG NOTE PATCH TO AVOID RELOAD OF LANGUAGE
CARD
R0,9 D3 VS8DOOEO D3:EAEAEA UNLOCK WRITE NOLOG
BRUN OR EXEC THE HELLO FILE
See Beneath Apple DOS, page 7-3. $9E42 must be changed from a
$06 to either a $34 (for BRUN) or $14 (for EXEC). $9E42 is in track
$00, sector $0D at +$42.

LOG NOTE PATCH TO BRUN THE HELLO FILE
R0,D 42 V06 42:34 UNLOCK WRITE NOLOG

LOG NOTE PATCH TO EXEC THE HELLO FILE
RO,D 42 V06 42:14 UNLOCK WRITE NOLOG

6-8

REMOVING THE PAUSE DURING A LONG CATALOG

See Beneath Apple DOS, page 7-3. $AE34 must be changed from a
$CE to a $60. $AE34 is in track $01, sector $0D at +$34.

LOG NOTE PATCH TO REMOVE PAUSE DURING LONG
CATALOG
R1,D 34 VCE 34:60 UNLOCK WRITE NOLOG

CHANGING THE HELLO FILE NAME

You can change the name of the HELLO file by ZAPping DOS's
primary file buffer, which contains it, directly. The primary file
name buffer is at $AA75. This is in track $01, sector $09 at +$75.
The following commands change the name 'HELLO' to 'HI THERE'.

LOG NOTE CHANGE THE HELLO FILE NAME
R1,9 75 V'HELLO' 75:'HI THERE' UNLOCK WRITE NOLOG

PUT CURSOR ON COMMAND WHICH CAUSED A DOS ERROR

When you get a DOS error message such as "FILE NOT FOUND" or
"FILE TYPE MISMATCH" because you typed the wrong file name or
misspelled it slightly, it would be nice if DOS would return the
cursor to the line with your faulty command so you could more
easily retype it. To make DOS do this from now on, apply the
following patch.

The patch must be made in two parts, one small patch in the middle
of DOS and a larger one in an unused area of RWTS. The memory
patches are:

ABFF:4C DF BC (was 6C 5E 9D)

and
BCDF:C6 25 C6 25 C6 25 C6 25 20 22 FC 6C 5E 9D

6-9

To apply this to a diskette, $A6FF is found to be in track $01, sector
$05 at +$FF (the patch actually spans into sector $06 as well) and
$BCDF is in track $00, sector $06 at +$DF.

LOG NOTE PATCH TO PUT CURSOR ON COMMAND .ND
GIVING DOS ERROR

UNLOCK

R1,5 FF V6C FF:4C WRITE

R1,6 00 V5E9D 00:DFBC WRITE

R0,6 DF:C625 : : : :2022FC6C5E9D WRITE NOLOG

ALLOW THE VALUE OF THE L KEYWORD OF A BSAVE TO
EXCEED 32K

This is the patch described in the introduction to this section. It
allows you to save more than 32K with the BSAVE command. $A963
must be changed from $FF7F to $FFFF. $A963 is in track $01,
sector $08 at +$63.

LOG NOTE PATCH TO ALLOW BSAVE OF MORE THAN 32K
R1,8 63 VFFTF 63:FFFF UNLOCK WRITE NOLOG

EXAMINING/CHANGING BASIC’S RANDOM TEXT FILES

If you use DOS from BASIC extensively, you will find ZAP a great
help while developing and maintaining your text files. In this
tutorial we will examine a typical random-type text file, created by
a BASIC program.

To follow along with the tutorial, enter the Applesoft BASIC
program shown in Figure 6.1, save it on the practice diskette, and
run the program to create the file, TELEPHONE DIRECTORY.
Notice that the program creates a text file of company names with
their area code and phone number. The data is written in 65 byte
records and is scattered around the file, leaving empty records here
and there. When you type in the program, please be sure to type a
CTRL D between the quote marks in line 10.

6-10

10 D§ = "n

20 DIM N$(20),N(20)

25 DATA 0,1,2,5,6,8,9,15,16,17,19,21,22,28,29,31,33
26 FOR I = O TO 16: READ N(I): NEXT I

30 N$(0) = "QUALITY SOFTWARE,213,3446599"

40 N$(1) = "ON-LINE SYSTEMS,209,6836858"

50 N$(2) = "CAVALIER COMPUTER,714,7558143"

60 N$(3) = "BUDGECO,415,6588141"

70 N$(4) = "SOUTHWESTERN DATA SYSTEMS,T714,5623670"
80 N$(5) = "MICROSOFT,206,4541315"

90 N$(6) = "DATAMOST,213,7091202"

100 N$(7) = "ADVENTURE INTERNATIONAL,305,8626917"
110 N$(8) = "STONEWARE,415,4546500"

120 N$(9) = "SIR-TECH,315,3936633"

130 N$(10) = "MUSE,301,6597212"

140 N$(11) = "BRODERBUND, U415,4566u424"

150 N$(12) = "SUBLOGIC,217,3598482"

160 N$(13) = "RAINBOW COMPUTING,213,3490300"

170 N$(14) = "BEAGLE BROS.,714,2966400"

180 N$(15) = "THE BOOK CO.,213,3714012"

190 N$(16) = "SYNERGISTIC SOFTWARE,206,2263216"

200 PRINT D$;"OPEN TELEPHONE DIRECTORY,L65"

210 FOR I = 0 TO 16

220 PRINT D$;"WRITE TELEPHONE DIRECTORY,R";N(I)
230 PRINT N$(I)

240 NEXT I

250 PRINT D$;"CLOSE TELEPHONE DIRECTORY"

260 END

FIGURE 6.1 — APPLESOFT PROGRAM LISTING

Boot up the Bag of Tricks diskette, select ZAP, and, once it is up,
insert your practice diskette. Now type:

OPEN'TELEPHONE DIRECTORY'
You will see a screen that looks like Figure 6.2. Notice that the
first company name, QUALITY SOFTWARE (deservedly first!), is in
record 0. Following it are two more data records and an empty
record. You should now tell ZAP something about your file's
organization. Give the record length with the following command:

RLENSGS.
Now we can make references to records by their record number.
First, imagine you wanted to find the record with DATAMOST's
phone number. You could use the ZAP Look command like this:

L'DATAMOST!

6-11

6-12

Z AP - S6,1 V$01 RSA=$0000
:OPEN'TELEPHONE DIRECTORY'
00 [DID5C1CCCID4DYAOD3CFCHDY

ocC
18
24
30
3C
48
S5u
60
6C
78
84
90
9C
A8
B4

D7C1D2C5ACB2B1B3ACB3B4BY
B6B5B9B98D00000000000000
000000000000000000000000
000000000000000000000000
0000000000CFCEADCCC9CECS
AOD3D9D3D4C5CDD3ACB2BOBY
ACB6B8B3B6B8B5B88D000000
000000000000000000000000
000000000000000000000000
00000000000000000000C3C1
D6C1CCCYC5D2A0C3CFCDDODS
D4CS5D2ACB7B1B4ACB7B5B5B8
B1B4B38D0000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
00000000

+$00 #0 *DU1

QUALITY SOFT
WARE, 213,344
6599...00n.n

............

««...ON-LINE
SYSTEMS, 209
,6836858....

............

VALIER COMPU
TER,7 14,7558
U3 enawvoes

FIGURE 6.2 — ZAP SCREEN AFTER ‘'OPEN’ COMMAND

Z AP - S6,1 V$01 RSA=$0002 +$U49 #0 *DU1
:L'DATAMOST'

00
ocC
18
24
30
3C
48
54
60
6C
78
84
90
9C
A8
B4
co
cc
D8
EX4
FO
FC

0000000000000000CDCYC3D2
CFD3CFC6DUACB2BOB6ACBUBS
B4B1B3B1B58D000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
00CHC 1DUC1CDCFD3D4ACB2B1
B3ACB7BOB9B1B2B0B28D0000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
000000000000000000000000
00000000

#%% MATCH #%%

....... .MICR
OSOFT, 206,45
41315.......

es s s e e s e

.DATAMOST, 21
3,7091202...

FIGURE 6.3 — THE ‘LOOK FOR STRING’ COMMAND

Your screen will now look like that in Figure 6.3. Notice that the
buffer cursor is over the first hex byte of the name "DATAMOST".
What record number is this? To find out, merely enter the STATUS
command:

STATUS

The status information is now shown on the screen, and should
appear like Figure 6.4. This screen indicates that you are currently
positioned to record 9, on its zeroeth byte (R$000009,B$000000).
The record length is set to $41 (65 in decimal), the file contains
space for $23 records (or a total of $900 bytes) and the current
sector is located at track $1B, sector $0C on the disk (note that your
version of TELEPHONE DIRECTORY may be in a different place on
the diskette but this is nothing to worry about).

Z AP - S6,1 V601 RSA=$0002 +$49 #0 ¥*DU1

:STATUS
--- ZAP STATUS ---

FILE OPEN: TELEPHONE DIRECTORY
T$1B,S$0C R$000009,B$000000 RLEN$0OOO41
FILE SIZE: $000023 RECS ($000900 BYTES)

BUFFER CHANGED UPPER CASE DISPLAY
ASCII DISPLAY MODE LOCKED - NO WRITES
NOT LOGGING WRAP ALLOWED

$10 SECTORS/TRACK $23 TRACKS/DISK
DOS16 DISK FORMAT

LOOK: C4C1D4C1CDCFD3D4
LOOK START: T$1B S$0E +$00

FIGURE 6.4 — THE 'STATUS’ COMMAND

Now, suppose you wanted to find record 6. You could type:

R6

ZAP responds with the display shown in Figure 6.5. Note that the
buffer cursor is pointing to the record containing information for
SOUTHWESTERN DATA SYSTEMS. The N and P commands may
have a different meaning then you might expect also. Type the P
command now:

P

6-13

Z AP - S6,1 V$01 RSA=$0001 +$86 #0 *DU1
:R6

00 000000000000000000000000 +ueeveuennan
0C 000000000000000000000000 «eveeeeeen..
18 000000000000000000000000 +eveuuenn...
24 000000000000000000000000 +eveeeuennn.
30 000000000000000000000000 ..vveeeennnn
3C 000000000000000000C2D5CH «vuun... .BUD
48 CTC5C3CFACB4B1BSACB6B5B8 GECO, 415,658
54 B8B1B4B18D00000000000000 81U41........
60 000000000000000000000000 SR
6C 000000000000000000000000 +eveeueennn.
78 000000000000000000000000 «eueueannnn
84 0000D3ICFD5DUCBDTC5D3DUCS . .SOUTHWESTE
90 D2CEAOC4C1DU4C1AOD3D9D3DY4 RN DATA SYST
9C C5CDD3ACB7B1BUACB5B6B2B3 EMS,714,5623
A8 B6B7B08D0000000000000000 670.ceue....
B4 000000000000000000000000 «.euuvuenwnnn
CO 000000000000000000000000 ..eveuennrnnn
CC 000000000000000000000000 «.veueunnnn.
D8 000000000000000000000000 «.vveuennnn.
E4 000000000000000000000000 «.eveuennnn.
FO 000000000000000000000000 +.eveueunn..
FC 00000000 ceen

FIGURE 6.5 — THE ‘READ’ COMMAND WITH AN OPEN FILE

The buffer cursor moves back 65 bytes to position itself over the
first byte of the record containing BUDGECO's data. Now enter the
command:

R24.

Record 24 does not exist. In fact, the sector which would contain it
if it did exist contains no non-empty records and, hence, was never
allocated at all. There is a great big hole in the file where that
sector would go. ZAP tells you this with the message:

##+ NOT IN FILE ***

Any time you enter a ZAP command which would attempt to read
this sector, you will see this message. To move around the sector
you will have to read the next valid record following the "hole".
ZAP does not contain a complete file manager, as does DOS, and can
not add sectors to a file, either in the middle or at the end of the
file.

6-14

Obviously, it is a simple matter to make changes to a random text
file such as this using ZAP. Suppose QUALITY SOFTWARE's phone
number has changed to 818 3446599. The following commands will
make the change:

RO L'213' :'818' UNLOCK WRITE

RELEASING UNUSED SPACE IN FILES

With each type of DOS file (I,A,T, and B) it is possible that the
contents of the file do not require the number of sectors allocated.
For example, if you initially create an A file by saving an
APPLESOFT program whose length requires 20 sectors on the
diskette, and later shorten the program so that it now only needs 15
sectors, the file will not be shortened and 5 sectors will be wasted.
The reason for this is that DOS will write the new version of the
program over the old version in the existing file and change the
length value (in the first two bytes of the file) but will not release
any trailing sectors to the free sector pool. Likewise, a short text
file written over a longer one will cause trailing sectors to pad the
file out to an excessive length. To correct this problem the DOS
manual suggests that you delete an old file before creating a new
one with the same name. You can use ZAP to detect the problem as
follows.

For Integer and Applesoft files, OPEN the file and examine the first
two bytes of data in the buffer. These bytes represent the actual
length of the program stored there. Suppose the first four bytes
are:

3E06

This means that the file is $063E bytes long. Position past the
length bytes to the first byte of the program image:

+2
Now position to the last byte of the program:

+$063E-1

6-15

You should now be in the last sector of the file. To determine if
this is the case, enter the STATUS command and compare the RSA
at the top of the screen with the length of the file in bytes.
Suppose the RSA is $0006 and the length of the file in bytes is
$000800. If you add one to the RSA and multiply it by decimal 256
(this is equivalent to tacking two zeros onto its right side, $000700
in this case), the result should be the true length of the file. In our
example, however, the STATUS gives the length as $000800. Since
the two values differ by 256 ($100) bytes, one extra sector is
allocated but not needed. To recover the sector for use by other
files, you must LOAD the BASIC program, DELETE it from the
diskette, and re-SAVE it.

If you are checking a B-type file you will find the length of the
actual data at +2 in the first seetor (not +0, as with BASIC
programs). You can follow the same procedure outlined above
(except that you will enter a +2 first) to determine if there are extra
sectors attached to the file. To recover them, use the tutorial
entitled FINDING THE A AND L VALUES OF A BINARY FILE to
determine the address and length keyword values you must use with
the BSAVE command. Then BLOAD the file, DELETE it from the
diskette, and BSAVE it again.

Reclaiming extra sectors in a text file (T) is a bit harder. First the
file must be OPENed. If the file has a random organization then the
problem does not occur, since you may end up using the space later
anyway. If the file is sequential, you can search for the end-of-file
mark, a binary zero:

LO

The cursor will be positioned over the last valid byte in the file.
The file only requires enough sectors to store everything up to this
byte. Obviously, some bytes will be wasted to round things out to
an even sector boundary. Extra sectors can be checked for in a
manner similar to the I and A and B files, as described above. To
free extra sectors, you must either write a program to read the file
into memory, delete it, and rewrite it to disk or use ZAP and
FIXCAT to free the sectors directly.

If you wish to use the latter procedure, follow these steps. Using
the STATUS command, write down the track and sector number of
the sector containing the last valid data byte in the file. Now
CLOSE the file:

6-16

CLOSE

Position to the VTOC:
VTOC

and sean for the file in the CATALOG:
L'MY FILE'

ZAP will now be positioned to the file name in the CATALOG file
descriptive entry. Back up to the track/sector pointer for the first
track/sector list (TSL):

-3
and ask ZAP to read this sector:
%

You should now be looking at the TSL for the file. See if you can
find a track/sector pair that matches the sector containing the last
valid data byte (you wrote it down earlier). If you see it, you can
use the Look command to position the buffer cursor to that spot in
the buffer. Now position to the track/sector pair describing the
first extra sector:

+2

and set the remainder of the TSL to zero (releasing the unwanted
sectors):

SETO
Now write the corrected TSL back to disk:
UNLOCK WRITE

At this point you may think that you are done — the sectors have
been deleted from the file. On the contrary, the sectors have been
deleted but they are not marked free. They are "lost" sectors, not
belonging to a file and not known to DOS to be free either. To
recover them for use by DOS you must run FIXCAT against the
diskette as described in the tutorial, RECOVERING LOST SECTORS
IN THE VTOC FREESPACE MAP.

6-17

Of course, you may not want to go through all of this to recover a
couple of sectors, but if you have found and released a number of
sectors in various files using ZAP, you can run FIXCAT once at the
very end of the process to harvest them all at once. Note that this
procedure could be used on I, A, and B type files as well, but the
LOAD/DELETE/SAVE or BLOAD/DELETE/BSAVE procedure is
much faster.

SCANNING A DISK FOR I/0 ERRORS

If you have seen the DOS message, I/O ERROR, while using one of
your diskettes or if you just want to play it safe, you can use ZAP to
scan your diskette for any sectors which might be damaged in some
way. Once you have located an Input/Output error in a sector, you
can use the next tutorial to try to fix it. (It might be a good idea
for you to read the Appendix, A DISCUSSION OF DISK I/O ERRORS,
before you work on this tutorial.)

To scan a disk for I/O errors, first boot the Bag of Tricks diskette,
select ZAP, and then, once ZAP is up, insert the diskette to be
checked. Start by reading track 0, sector 0:

R0,0
Next, type the following line:
NOWRAP N LOOP

This command line will turn off the WRAP option so that the scan
will stop when the last sector on the diskette has been read (track
$22, sector $0F). If you didn't do this, the command line would loop
forever! The N command will read the next sector, and the LOOP
command will repeat the process. The entire operation will take a
minute or two. If there is an I/O ERROR on your diskette, the
command will be halted and an error message will be displayed. If
this happens, write down the track and sector number of the error
and retype the command line. If, instead, the command ends with
the message 'NUMBER TOO BIG' on track $22, sector $0F, then
there were no I/O errors.

This method can also be used to check for I/O errors within a. file.
Just OPEN the file first and then follow the above steps.

If you have detected one or more I/O errors on your diskette, use the
following tutorial to try to get around it.

6-18

LOCATING AND FIXING AN I/0 ERROR

Imagine that you have just seen a DOS I/O ERROR méssage and
have run the previous tutorial to locate it. Now it is time to try to
do something about it. First you will determine whether the 1/0
error is intermittent. Try reading the faulty sector again (you
should have noted the track and sector number of the error when you
scanned the diskette. If you haven't done this, run through the
SCANNING A DISK FOR I/0 ERRORS tutorial before working on
this one). Use the ZAP Read command to try to read the sector. If
you still get an I/O error, keep trying several times. You can use
some of the techniques listed in the Appendix as well.

If you finally manage to read the sector, the first thing to do is save
the data somewhere else. WRITE it to track $02, sector $0F. This
is an unused DOS image sector. Of course if you have freed track
$02 in order to reclaim it from DOS for your own use (using FIXCAT
or a similar utility) you will have to save the data somewhere else.
Now try to reWRITE the bad sector. Many times, the error will go
away if the data is rewritten. If this too produces an I/O error, you
will have to use the INIT utility to correct the formatting for this
sector. See the tutorial entitled IDENTIFYING AND CORRECTING
FORMATTING ERRORS for information on how this is done. If you
succeed in writing the data back, try rereading it a number of times.
If no more error messages occur then you have probably fixed the
error. In any case, it might be a good time to copy the diskette to a
new one and put the old one "out to pasture".

If you can't read the sector data then it is probably not recoverable.
You should, at this point, try to determine whether the sector
formatting is gone, along with the data. Try WRITEing to the
sector:

SET0 UNLOCK WRITE

If this produces an I/O error, you will have to use INIT to reformat
the sector. Refer to the aforementioned tutorial, IDENTIFYING
AND CORRECTING FORMATTING ERRORS. If you did manage to
write the zeroed buffer, you will want to know what part of your
diskette has been clobbered.

6-19

If you are on track $00, $01 or $02 you have probably stepped on the
DOS boot image. This can be fixed by running the Apple utilty,
MASTER CREATE. If you have stepped on track $11, the
CATALOG has been damaged. You will have to run FIXCAT to
recover what has been lost. Refer to the tutorial, RECON-
STRUCTING A BLOWN CATALOG. If you are positioned to any
other track you can use the WHERE command to find out what file
has been damaged:

WHERE

After a while, ZAP will respond with an I/O ERROR. Type STATUS
to find out what file has been opened. If you were positioned in an
area not contained by any file, the message "NOT FOUND" will be
displayed. In this case you are safe! If a file does contain the I/O
error, there is a possibility that the sector is not being used. The
bad sector could be extra padding at the end of a file which has been
shortened. Read through the tutorial, RELEASING UNUSED SPACE
IN FILES, for more information on this. In this case, the INIT
utility can be used at once to correct the sector formatting without
fear of data loss.

If the bad sector is in a file, you will want to try to pateh it back
together, however. If the file is a Text file, look at the sectors
immediately before and after the bad one (use the P and N
commands). Perhaps you will be able to figure out what was in the
lost sector and ZAP it back. If not, you can at least change it to
something more intelligible than zeros. A good choice for a text
file would be hex $8D's (carriage returns). This will have the effect
of inserting 256 null length records in the file. You can then use
BASIC to read and recover the data after the damaged sector by
skipping these records.

If the file is a B, A or I type file you may have to kiss it goodbye.
Unless you are adept at BASIC's tokenizing, you may have a tough
time putting something into the sector which won't cause BASIC to
choke. Of course it is always worth a try. Load the program into
BASIC and see if you can piece it back together. Likewise, it is
pretty hard to remember what was in a binary file, since a sector
can represent over a hundred instructions.

6-20

COPYING PASCAL FILES TO DOS USING ZAP MACROS

This tutorial will demonstrate how to copy an Apple PASCAL text
file to a DOS text file. This combination has been selected merely
as an example. In principle, you should be able to apply this
technique with very minor changes to the copying of 13 sector to 16
sector or vice versa, or any combination of CPM, PASCAL or all
versions of DOS. Any file that ZAP can OPEN can be copied to any
other file ZAP can OPEN.

The procedure used here involves two disk drives. It is possible to
use ZAP to copy files using one drive, but the tedium involved does
not lend itself well to a tutorial. If you have only one drive, read
through this tutorial and make sure you understand what is involved.
It should be a relatively simple matter for you to modify this
procedure to use one drive (you will have to enter commands prior to
each disk swap). Another approach might employ ZAP's multiple
buffers to read up to 16 sectors in before switching diskettes.

In this example we will copy the PASCAL file GRAFCHARS.TEXT.
This file appears on one of the Apple PASCAL system diskettes,
APPLE3:. If you do not have PASCAL for your Apple, you will have
to follow along with this tutorial without actually performing it or
you can substitute a CPM or DOS input file and change all
references to the file name and the diskette type in the ZAP
commands given.

The first thing to do is to create the output file. ZAP does not
contain any file management to speak of, so it can not create a file
or add sectors to an existing file. You will have to pre-create the
file with at least as many sectors as the input file. Don't worry if
you make it too big. You can always shorten it using the procedure
discussed in the tutorial, RELEASING UNUSED SPACE IN FILES.
We will start by OPENing the PASCAL file to find out how large it
is. Boot up the Bag of Tricks diskette, seleet ZAP, and, after it is
up, replace the Bag of Tricks diskette with the PASCAL diskette,
APPLE3:

PASCAL OPEN"GRAFCHARS.TEXT" STATUS

6-21

After you have entered the above command to ZAP, you will see a
STATUS screen with a value for the FILE SIZE in records (it is
$00000C). There are 12 records in the file ($0C is hexadecimal for
12). Now replace the APPLE3: diskette with a diskette that has
DOS on it, boot DOS, and insert your practice diskette in the drive.
Enter the following command to force DOS to create an output file
with enough sectors:

BSAVE GRAFCHARS,A$800,L$0D00

Notice that the length specified on the BSAVE command must be the
number of records in the file +1 (given in hex, $0D = 13 decimal),
followed by two zeros. Now that the output file is created, reinsert
the Bag of Tricks diskette and rerun ZAP. The first thing to do is to
change the file type of the DOS file, GRAFCHARS, from B (binary)
to T (text). Enter the following commands in ZAP, after inserting
the practice diskette in the drive:

VTOC L'GRAFCHARS' -1

You should be positioned one byte before the file name in the
CATALOG entry describing the file, GRAFCHARS. This byte is the
file type and should currently be a $04 (Binary file). Change it to a
$00 (Text file):

:00 UNLOCK WRITE
Be sure to type the colon. Now OPEN the file and set it to zeros:

OPEN'GRAFCHARS'
UNLOCK NOWRAP SET0 WRITE N LOOP

When you see the message, NUMBER TOO BIG, the entire file has
been set to zero. You are ready now to enter the ZAP macros you
will need to copy the file. To make room for the macros you will
have to delete some of the built-in macros first. Enter:

/MREAD /MWRITE
and then:

(OP1 #0 CLOSE S,1 PASCAL OPEN"GRAFCHARS.TEXT")

(OP2 #1 CLOSE S,2 DOS16 OPEN"GRAFCHARS")

(START OP2 =SV2 OP1)

(COPY =SV1 OP2 #0 ATSV2 WRITE ATSV2+256. =SV2 OP1
SV1)

6-22

These are all the macros you will need. If you wish, you can double
cheek to be sure you typed these macros in correctly by issuing the
MACROS command. To start the copy operation, insert the input
diskette (APPLE3:) in drive 1 and the output diskette (your practice
diskette) in drive 2. Now type:

START

Ugh! What is that junk? PASCAL likes to store some binary
information about the file in the first few sectors. You will want to
skip over that so type:

N

Keep typing N until you see the first sector containing text (that
will be RSA$00004). Now you want to copy that over as the first
sector of the DOS output file:

COPY

The deed is done! Now type N again to view the next sector of the
PASCAL file. It looks good so type COPY again. If you are getting
bored, you can copy the rest of the PASCAL file by typing:

NOWRAP N COPY LOOP

The entire file will have been copied when you see the message,
NUMBER TOO BIG. At this point you can view the output file by

typing:
0oP2

You may now want to use the methods described in RELEASING
UNUSED SPACE IN FILES to truncate the file to its actual size. It
is also worth mentioning that the format of a PASCAL text file is
somewhat different than that of a standard DOS file. Each record
is terminated by a carriage return, as with DOS, but each record is
preceeded by a $10 as well. Also, the most significant bit (MSB) of
each byte is turned off — a carriage return is $0D, not $8D. You
may want to use ZAP's Or command to turn on the high order bits
(080 LOOP256. WRITE) and you may want to change all occurrences
of $10 to $A0 (blank). This can be done with the Look command in a

loop:

:tA0 WRITE
L10 :A0 WRITE NOWRAP LOOP

6-23

COMPARING FILES USING ZAP MACROS

This tutorial will show you how to use ZAP to compare two DOS
files which both reside on the same diskette. Of course, the macros
could be modified to operate using two diskettes and/or different
diskette types. To prepare for the tutorial, boot a diskette with
DOS on it and insert the practice diskette into your drive. Enter
the following DOS commands:

BSAVE FILE1,A$800,L.$1000
BSAVE FILE2,A$800,L$1000

These commands create two identical files of 17 sectors each. Now
boot the Bag of Tricks diskette and invoke ZAP. Insert your
practice diskette in the drive and enter the following ZAP
commands:

/MREAD /MWRITE

(OP1 #0 OPEN'FILEL")

(OP2 #0 OPEN'FILE?2")

(MRD #+1 AT *+256. LOOP7,-18.)

(CMP OP1 AT SV1 MRD =SV1 OP2 AT SV2 MRD =SV2 #7 #+1
COMPARE-8 LOOPS,-18.)

This sets up the macros needed to do the comparison. Briefly, the
MRD (multiple read) maecro is called as a sub-macro by the CMP
macro. MRD reads the next seven sectors into the next seven ZAP
buffers. The CMP macro first opens FILE1, repositions to its
remembered last location in that file (SV1) and reads that sector
along with the following seven into buffers 0 through 7. CMP then
performs a similar operation with FILE2,.reading its sectors into
buffers 8 through F. A loop is then performed to compare buffer 8
(#7 #+1 = #8) to buffer 0 (COMPARE-8), 9 to 1, A to 2, ete. If any of
the COMPARE operations fail, an error message will be printed and
the macro will halt. The CMP macro will have to be manually
invoked for each 8 sectors to be compared.

To initialize things for the operation, perform the following
commands:

OP1 =SV1 OP2 =SV2
By doing this, you have initialized the label variables SV1 (save my

place in file 1) and SV2 (save my place in file 2) to point to the first
sector of each file. You can now compare 8 sectors by typing:

CMP
6-24

When this macro finishes, you will be looking at the eighth sector of
FILE2 (RSA $000007) in buffer $0F. In other words, the first eight
sectors of the files match exactly (we already know that, of course).
To compare the next seven sectors (the macro overlaps and
eompares sector $000007 again) type:

CMP

again. This time you are looking at RSA $00000E. Type CMP one
last time. You are now looking at RSA $000004. This means that
the macro has wrapped around at the end of the files and re-
compared the first five sectors of each file again. Obviously the
files match.

Now position to RSA $000005 of FILE1:
OP1 R5

and change something in the sector:
3E:'JUST TESTING' UNLOCK WRITE

Now repeat the above operation:

OP1 =SV1 OP2 =SV2
CMP

The first invokation of the CMP macro ends prematurely with a
"DOES NOT MATCH" error message. The buffer cursor should be
pointing at offset $3E. You do not see the text 'JUST TESTING'
because you are looking at the sector which was read from FILE2.
Type #-8 to see the corresponding sector from FILE1 again.

This set of macros has two disadvantages. One is that CMP does
not stop the compare operation at the end of the file. The other
problem is that once a mismatch has been found, it is difficult to
start the compare operation going again at the point where it left
off. The reason both of these problems exist is the fact that
multiple sectors are read at a time into all 16 ZAP buffers. If you
were to redesign the macros to read and compare one sector at a
time (as is done in the copy macros given in the previous tutorial)
you could circumvent both problems, but the operation would take
longer because both files would be reopened for every sector
compared. The tradeoff is improved performance versus ease of
use, and it is up to you to choose a method that best suits your
needs.

6-25

PATCHING A MACHINE LANGUAGE PROGRAM USING ZAP

ZAP can be very useful to the assembly language programmer who
wishes to apply patches directly to his programs using ZAP. Often,
it is inconvenient to reassemble a program to make a very small
change. Likewise, a complex program may not lend itself to being
patched in memory and reBSAVEed (especially if it runs where DOS
normally is loaded). The following tutorial will demonstrate the use
of ZAP in patching a machine language program.

First, boot the Bag of Tricks diskette, select ZAP, and then insert
the practice diskette. If you have a printer, turn on logging as
follows:

LOG

this will provide you with a permanent record of the changes you
make to the program. Now open the practice binary file:

OPEN'BINARY FILE'

You should now be looking at the first sector of the file (the only
sector, in this case). Since we know that a binary file always

consists of a 2 byte address and a 2 byte length followed by the
binary memory image, you must position past these to the program
itself:

+4
Assume that this is the start of a machine language program called,
appropriately enough, "PROGRAM". Cause ZAP to memorize this
location in your file:

=PROGRAM

Suppose that, after consulting your assembly listing, you wanted to
examine an instruction at +0009 from the entry point, PROGRAM.
You would type:

PROGRAM+9 I
Here you see a JMP instruction:

500A:4C BS B7 JMP $B7B5

6-26

followed by a number of other instructions. The JMP instruetion
will appear in a location in memory other than $500A when the
program is BLOADed, but this just happens to be its current memory
location in ZAP's buffer, which starts at $5000. If you wanted to
dump these instructions to your printer, you could do so as follows:

PROGRAM+9 IDUMP

Instead of just 20 instructions, the entire remaining portion of the
ZAP buffer is disassembled to the printer. Now imagine that you
wish to change this instruetion to JMP to $77B5 instead of $B7BS5.
To do so you position the buffer cursor to the instruction and store
the new object code there:

PROGRAM+9:4CB577 UNLOCK WRITE
Now redisplay the instruction to see the change you have made:
PROGRAM+9 I

Do you see the instruction at $502C? Suppose you wanted to find it
in your assembly listing. To do so you need to know its
displacement (offset) in hex from the entry point. To ask ZAP to
calculate this, enter:

2C ?*-PROGRAM

This gives $000028 as the displacement from the entry point to this
instruetion. If the instruction you wanted was in another sector of
the file you could still perform this operation, but you would also
have to calculate the difference in the RSA between the sector
containing the instruction and the first sector of the program. This
difference would form the high order byte of the offset. For
example, if the instruction we just examined was actually in RSA
$000A of the file then the displacement to the instruction would be
$0A28.

RECOVERING LOST SECTORS IN THE VTOC FREESPACE MAP

Upon oceasion it is possible that a few sectors on a diskette will
become lost. These lost sectors are not marked free for use in the
VTOC bit map, yet they are neither part of a file, DOS, or the
CATALOG track. This ean happen, for example, if you press RESET
or turn the machine off while a file is being written.

6-27

RECOVERING LOST SECTORS IN
THE VTOC FREESPACE MAP

When lost sectors exist, you can use FIXCAT to locate these sectors
and release them for use again by updating the VTOC freespace bit
map. One word of warning, however. Some media surface analysis
programs will intentionally create lost sectors when it is determined
that they can never be successfully formatted. If you have used a
surface analysis program to prepare your diskette for use, do not use
FIXCAT to recover these sectors. 1/O errors will result if you do.

To check a diskette for lost sectors, boot the Bag of Tricks diskette
and select FIXCAT. Insert the diskette to be checked (try the
practice diskette first, although there should be no lost sectors on
that one!) and follow the introductory tutorial given in Chapter 5.
If there are lost sectors, FIXCAT will respond:

nnnnn SECTORS IN USE
mmmmm SECTORS FREE

ONE OR MORE ERRORS WERE FOUND IN THE
VTOC BIT MAP. CORRECT THEM?

If you reply Y to this question, FIXCAT will correct it's in-memory
image of the VTOC to mark your lost sectors free again. Now,
when the message:

APPLY ACCUMULATED CORRECTIONS TO THE
VTOC/CATALOG TRACK?

6-28

appears, reply Y to have FIXCAT write its corrected VTOC back to
your diskette.

RECLAIMING TRACKS 1 AND 2 FOR FILESPACE

Unless you really like the convenience of being able to boot DOS
from any of your diskettes, you can inerease the storage capacity of
a diskette by 32 sectors (or 26 for 13 sector formats) by releasing to
the free sector pool the sectors which normally hold the DOS boot
image in tracks 1 and 2. Once you do this to a diskette you can not
boot DOS from it but must boot another diskette (such as your
system master) and then insert the modified diskette once DOS is
loaded. Since files will be allocated using the newly released
sectors, you should not run MASTER CREATE against this diskette
as it would overwrite some of your files. Instructions are given in
the next tutorial, A DOS-LESS BOOT PROGRAM, for placing a short
program on track 0 which will remind you that there is no longer a
DOS on the diskette should you try to boot from it.

Note that it is not a good idea to free sectors in track 0 for use with
files. Although some magazine articles and utilities have advocated
this, you can run into problems if DOS attempts to allocate a track -
sector list for a new file on track 0. In this case, the catalog entry
for the file will look to DOS like an end-of-catalog marker (DOS
checks the TSL track byte for zero to see if the end of the catalog
has been reached), and you will never be able to access the file
again. Likewise, suggestions have been made to use some of the
sectors of the catalog track for file storage. The number of sectors
gained in this way is usually not worth the effort (since you must
still provide at least a VTOC sector and one catalog sector, leaving
only 14 possible new sectors) and the practice severely limits the
number of files which can be stored on the diskette. For these
reasons, Bag of Tricks only supports recovery of tracks 1 and 2 as
described below.

Boot the Bag of Tricks diskette, select FIXCAT, and then insert your
oractice diskette when requested. Accept all prompts (except,
serhaps, the 13 versus 16 sector prompt) until this message appears:

DOES THIS DISKETTE CONTAIN A DOS IMAGE
ON TRACKS 0, 1, AND 2?

6-29

Sinece you no longer care about the DOS image on these tracks, reply
N to this question. FIXCAT will still force track 0 to be allocated,
since track/sector lists may not appear on track 0, but it will release
all the sectors on track 1 and track 2 for DOS's subsequent use.
Later, FIXCAT will display this message:

ONE OR MORE ERRORS WERE FOUND IN THE
VTOC BIT MAP. CORRECT THEM?

This results from the fact that the new freespace bit map does not
match the old one (in which tracks 1 and 2 were marked allocated).
Reply Y to this question to accept FIXCAT's changes to the VTOC
bit map. Now, when the message:

APPLY ACCUMULATED CORRECTIONS TO THE
VTOC/CATALOG TRACK?

appears, reply Y to have FIXCAT update the diskette itself. The
procedure is complete. Remember that whenever you run FIXCAT
against this diskette in the future you must reply N to the question
about whether DOS exists on tracks 0, 1, and 2 on this diskette.
Now follow the next tutorial to place a reminder boot program on
track 0 of your diskette.

A DOS-LESS BOOT PROGRAM

There have been many articles written about how diskette storage
can be increased by removing DOS from the diskette and using at
least two additional tracks for data storage. As pointed out in the
INIT tutorial (Chapter 3), you can very easily produce a DOS-less
diskette suitable for data storage. By using our INIT program you
have the added benefit of a diskette optimally skewed for faster
access time.

There is a drawback, however, to using diskettes solely for data. If
you do try to boot the diskette, it will either spin forever or cause
your disk drive to recalibrate, depending on how DOS was purged
from the diskette. Below you will find a simple way to avoid that
problem, a way that will work effectively on any 16-sector DOS-less
diskette as long as sector 0 is unused. Unfortunately, DOS versions
3.2.1 and earlier use an encoding technique that is difficult to
reproduce. For that reason this program will only work for 16
sector diskettes.

6-30

When a diskette is booted the software on the disk controller card
reads track 0 sector 0 into memory and then gives control to that
software, which normally carries on the boot process. We have
written a short machine languge program that, rather than booting,
turns off the disk drive and then prints a message on the screen
informing you that DOS is not present on the diskette. The program
has been written such that you may easily enter any message you
wish to appear on the screen when the diskette is booted. The
program itself consists of 36 bytes and may be followed by any
ASCII string of 218 characters or less, terminated by a zero (00).

ZAP provides a very quick means of writing the software to track 0
sector 0. Boot the Bag of Tricks diskette and select ZAP from the
menu. When ZAP has displayed its intial screen, insert your already
formatted DOS-less diskette in your disk drive. Since ZAP defaults
to 16 sector format you may proceed to select the appropriate slot
and drive values you wish to use.

Read track 0 sector 0 into memory to make sure it is accessible.
This is done with the command R0,0. In a moment the screen will
display the contents of the sector. The next step is to set the entire
sector to 00's, this is done with the command SET0. The sector data
should rapidly change to 00's. Now you can enter the short program
that follows, making sure that you type the preceding colon which
tells ZAP that you are entering data at the current cursor position.

:01A62BBD88C02058 (return)
:FCA9258500A90885 (return)
:01201808A900FOFC (return)
:AOOOB100F00620F0 (return)
:FDC8DOF660 (return)

Your screen should now look like Figure 6.6. Please verify that you
have entered the data correctly before proceeding.

The cursor is now correctly positioned to enter your ASCII string.
The sample below is given to show how to enter the data. You may
enter different text if you want to; just make sure it fits within the
remainder of the sector. The 8D entry causes a return when the
message is printed, forcing the following text to the next line.

'DOS-LESS DISKETTE!' (return)

:8D (return)
s'USE ANOTHER DISKETTE' (return)

6-31

Z AP - S6,1 VSFE TSOO S$00 +$25 #0 *DUl
: : FDC8DOF660

00 01A62BRDS8SCO2058FCA92585 .&+=.@ X\)%.
0OC 00A9088501201808A900FO0FC .)... ..).P\
18 AOOOB100OFO0620FOFDCS8DOF6 .1.P. PJHPV
24 600000000000000000000000 «ceseesoses .
30 000000000000000000000000 «oeee.. e
3C 000000000000000000000000 ceeeen
48 000000000000000000000000 . .eceesesess
54 000000000000000000000000 o5e & & & o6
60 000000000000000000000000 s eescoesseas
6C 000000000000000000000000 «eesesssa g
78 000000000000000000000000 «ceeeeesasoes
84 000000000000000000000000 ceceessses e
90 000000000000000000000000 «eeoe.. T
9C 000000000000000000000000 eeeee.. ceeen
000000000000000000000000 ++.... isee
000000000000000000000000 e ececececasss
000000000000000000000000 «..... isweee
000000000000000000000000 «sseess o ¥ S
000000000000000000000000 «ecceessasss
000000000000000000000000 cseosseass -
000000000000000000000000 eeececeecacss
00000000 TP

33RBR8EB

FIGURE 6.6. — THE DOSLESS BOOT PROGRAM

A zero must conclude the text to signify the end of the string, but
since you previously set the buffer to zeroes you need not enter it.

When you are satisfied that you have entered the information
correctly, you may write the buffer to your diskette. This is done
by first typing UNLOCK followed by a carriage return, which
enables ZAP to write. Then type the command WRITE followed by
a carriage return. You have now stored the program on the
diskette.

To repeat this task, you do not need to retype the information in.
You can simply use ZAP to read track 0 sector 0 from an already
modified diskette, insert the new diskette and write the sector onto
the diskette. If you wish to change the screen message, position the
cursor to the beginning of the ASCII string by typing 25 followed by
a carriage return. Following the example above, type the new
string into the buffer making sure to conclude it with a 00 and write
it to your diskette.

6-32

UN-DELETING A FILE

There are two ways to un-DELETE a file you have accidentally
DELETEd. If you have only just deleted it, and you have not
created or written any other files on the diskette in the meantime,
you can recover it using ZAP. The following example shows how
this can be done.

Boot any diskette with DOS on it, then insert the practice diskette.
DELETE the file BINARY FILE. Now boot the Bag of Tricks
diskette and select ZAP. Insert the practice diskette and type:

DOS16

or DOS13 as the case may be. This will position you to the catalog.
Now type:

VTOC L'BINARY FILE'

This will find the catalog entry for BINARY FILE. The entry is still
there even though the file has been deleted. The buffer cursor will
be positioned over the first byte of the file name. Now back up the
cursor to the start of the catalog entry:

-3

The cursor should be positioned over a $FF. This indicates that the
file has been deleted. The $FF must be replaced with the track
number of the first Track/Sector List for the file. Luckily, DOS
always saves this number in the last byte of the file name before
stomping on it with the $FF. To find it, type:

+32.
Suppose that the number here is $13. So change the $FF to $13:
:A0 -33. :13 UNLOCK WRITE
These commands tell ZAP to change the last byte of the file name
back to a blank ($A0 in hex), back up to the TSL track byte, store
the track number of the first TSL, and rewrite the catalog sector.
Now run FIXCAT as outlined in the tutorial, RECOVERING LOST

SECTORS IN THE VTOC FREESPACE MAP, to mark all of the
sectors belonging to the deleted file as "in use".

6-33

If you have created new files since you DELETEA the file, there is a
possibility that the above procedure will not work for you. The
catalog entry which once held the name of the file you want may
have been reused for another file. In this case, the Look command
will not find the name in the catalog. You will have to use FIXCAT
to search the diskette for the file as described below. If you do find
the catalog entry for the file, there is still a chance that some of its
sectors have been reused by another file. This will be indicated by
the FIXCAT message:

WARNING: ONE OR MORE SECTORS IN THIS
FILE OVERLAP A PREVIOUSLY PROCESSED
FILE. COPY THIS FILE TO ANOTHER DISK,
DELETE IT, AND RERUN FIXCAT.

If this message appears, some of the sectors for your file have been
used by other, newer files. You will have to copy your un-deleted
file to another diskette, DELETE it from this one, and rerun
FIXCAT against the original diskette to resolve the VTOC freespace
conflicts. You can then see what can be salvaged by examining the
copy on the other diskette using ZAP. Refer to the tutorial on
LOCATING AND FIXING AN I/O ERROR for ideas on what to do
with the "moth holes" in your file.

If there is no catalog entry for your file all is not lost. You can ask
FIXCAT to search the diskette for the first Track/Sector List of the
Most" file (if it hasn't been overwritten) and create a new catalog
entry for the file. During the process, FIXCAT will warn you if
there are overlapping sectors. If so, you should follow the
procedure outlined above.

To use FIXCAT to search the diskette, boot the Bag of Tricks
diskette and select FIXCAT. Accept all of the prompts (as
appropriate) and insert the diskette to be searched when FIXCAT
asks for it. (You can try this out on the practice diskette by
DELETEing BINARY FILE again.) When the message:

SCAN FOR LOST OR DELETED FILES?
appears, reply Y. FIXCAT will search the diskette for Track/Sector
Lists which do not appear as part of any file described by the

catalog track. If FIXCAT finds a TSL you will see something like
this:

6-34

FILE LOCATED. FIRST DATA SECTOR:
XXXXXXXXXXXXXXXXXXXXXXXX eeee
XAXXXXXXXXXXXXXXXXXXXXXX coos
XAXXXXXXXXXXXXXXXXXXXXXX ececcececcsee
ete.

RECOVER THIS FILE?

If you think this might be your long lost file, reply Y. When the
message:

PLEASE GIVE A NAME TO THE FILE.

is displayed, enter the name of your deleted file. Also respond with
its type (T, I, A, or B) when prompted. FIXCAT will create a
catalog entry for the file and, when you see the message:

APPLY ACCUMULATED CORRECTIONS TO THE
VTOC/CATALOG TRACK?

reply Y to finish the un-delete process. Note that you will probably
see the message:

ONE OR MORE ERRORS WERE FOUND IN THE
VTOC BIT MAP. CORRECT THEM?

This is normal. FIXCAT has reallocated all of the sectors occupied
by your file and the VTOC on the diskette will not reflect this.
Reply Y to this question so that the un-deleted file will not be
overwritten by other files.

RECONSTRUCTING A BLOWN CATALOG

The surest sign of a damaged catalog track is an I/0O ERROR
message from DOS when you try to CATALOG the diskette. If this
happens, you will be unable to do mueh with the diskette. The
problem could be just one damaged sector, or the entire track could
be gone. In either case, FIXCAT will come to your rescue and
automatically recover all of your files.

6-35

This tutorial will be in the nature of a demonstration of FIXCAT's
capabilities to recover lost catalogs. To perform the tutorial it will
be necessary first to create a damaged catalog on the practice
diskette. To do this, boot the Bag of Tricks diskette, select ZAP,
and then insert the practice diskette once ZAP is up. Now type:

VTOC
SET0 UNLOCK WRITE N LOOP16.

The first line will position you to the VTOC of the practice diskette.
The next commands set each sector of the catalog track, including
the VTOC, to zeroes. This is an extreme case. If you were working
with an actual damaged diskette you would want to save as many of
the sectors as could be read. To do this you would run the INIT
utility to reformat track $11 (the catalog track), preserving any data
already on it. If INIT can read any of the catalog sectors it will
leave them in place. Otherwise, it will write unreadable sectors
back to the diskette as zeros. For more information on using INIT
to reformat, read the tutorial IDENTIFYING AND CORRECTING
FORMATTING ERRORS. If INIT is unable to format the diskette
due to a physically damaged media, you may have to use it to copy
every sector over to another diskette. (See the Appendix for
patches to DOS's copy program that will allow you to do this.) This
new diskette can then be operated upon as described by this tutorial.

INIT § FIXCAT WORK TOGETHER TO REPAIR DISKETTES

Now that you have a diskette with a totally destroyed catalog track,
it is time to run FIXCAT. Boot the Bag of Tricks diskette and
select FIXCAT. Follow along with the tutorial, using your practice
diskette when FIXCAT calls for it.

6-36

FIXCAT will first ask for a slot number for output. Accept the
prompt of 0 (the screen). When asked for the automatic timeout
value, reply 0 (no timeout). Next reply with the number of sectors
per track (16 or 13) for the target diskette. Finally, accept the
prompt of R (read catalog track) to start things going. You could
have said S here, and FIXCAT would not have bothered to read the
catalog from the diskette (it is zero anyway), but it never hurts to
read the catalog in case any of the sectors are still good. The next
message you see is:

CHECKING FORMAT OF VTOC FOR VALIDITY...

LINK TO CATALOG BAD
FIX IT?
X

FIXCAT is now attempting to make sense out of a zeroed VTOC.
By the time it has finished this phase it will have found errors in
practically every field in the VTOC. The result will be a valid,
albeit empty, VTOC. Reply Y (accept the prompt) on each "FIX
IT?" question until you see the messages:

CHECKING FORMAT OF CATALOG...

T$11 S$0F CATALOG LINK BAD
FIX IT?
Y

Now FIXCAT is trying to put together an empty catalog from your
zeroed track. It will find that every sector requires a track/sector
link to the next so reply Y to every question until you see:

DOES THE DISKETTE CONTAIN A DOS IMAGE
ON TRACKS 0, 1, AND 2?
Y

If you have never "wiped" DOS from this diskette (as described in a
previous tutorial), reply Y (accept the prompt). Otherwise, reply N.
Now you will see this question:

SCAN FOR LOST OR DELETED FILES?
N

6-37

Change the prompt to Y and press RETURN. This is the reply which
causes FIXCAT to recover your catalog. FIXCAT will now spend
some time searching every sector on the diskette which might
contain a file's track/sector list. When it finds a TSL it will display
something like this:

FILE LOCATED. FIRST DATA SECTOR:

090007080AC080000000084A ...ccoveeee J
000000000000000000000000 +«eceeoscese
000000000000000000000000 cccveeeescns
000000000000000000000000 «cceeeeee oiw s
000000000000000000000000 cecennan
000000000000000000000000 - csecsns
000000000000000000000000 e s eeceeesne ..
000000000000000000000000 «oceceeecces
000000000000000000000000 «ccecsescess
000000000000000000000000 ceeen
000000000000000000000000 «.veevs.. .08
000000000000000000000000 «eccescocess

000000000000000000000000 ceseccsscces
000000000000000000000000 «ccceeeseese
000000000000000000000000 «occeeeecces
000000000000000000000000 «cceoeeecess
000000000000000000000000 «ccceeeeeees

RECOVER THIS FILE?
Y

This is a hexadecimal and character dump of part of the first sector
of the file FIXCAT has located. The reason the sector is dumped is
to give you a chance to try to identify the file and determine
whether you want to recover it or not. It could be that the file is a
previously DELETEd one which you no longer wanted. By
recovering it you may create conflicts and overlapping sectors with
other files. In this case we know that no files were ever deleted, so
accept the prompt of Y. Now you will see:

PLEASE GIVE A NAME TO THE FILE
UNKNOWN FILE #00

Obviously, FIXCAT has no idea what the name of the file should be.
It is prompting you with a name which is probably unique. If, after
examining the sector dump, you think you know the name of the file,
you can change this prompt and put the actual name into the catalog
at this time. We don't know which file this is so we must accept the
prompt of UNKNOWN FILE #00.

6-38

Now FIXCAT will display some more information about the file:
FILE: UNKNOWN FILE #00

TRACK/SECTOR LIST: T$12 S$0F
DATA: T$12 S$0E

TOTAL SECTORS ALLOCATED TO FILE: $0002

The location of the track/sector list (TSL) for the file is given as
track $12, sector $0F. The file contains only one data sector, at
track $12, sector $0E, for a total of 2 seetors (counting the TSL
itself). Now FIXCAT asks for the type of file:

WHAT TYPE OF FILE IS IT? (T,,A,B,R,S)
A

Notice that FIXCAT has guessed that the file is an APPLESOFT
program. It turns out that this guess is correct, since this §ile is, in
reality, the HELLO program for the diskette! Of course you don't
know this so you can only hope that FIXCAT has guessed correctly
and therefore accept its prompt of A.

This process now repeats itself for every file on the diskette. Other
files are located, their first sector is displayed, and you accept all of
the prompts to recover them. When the scan completes you will see
this message:

72 SECTORS IN USE
488 SECTORS FREE

ONE OR MORE ERRORS WERE FOUND IN THE
VTOC BIT MAP. CORRECT THEM?
Y

This message indicates that the computed freespace map does not
match the one found on the diskette. Obviously it doesn't since the
one on the diskette is nothing but zeros! Reply Y to cause FIXCAT
to substitute the computed freespace map for the zeroed one. Now
you will see:

PROCESSING COMPLETED.
APPLY ACCUMULATED CORRECTIONS TO THE
VTOC/CATALOG TRACK?

6-39

Reply Y to this question to cause FIXCAT to write back its
reconstructed catalog track to the practice diskette. FIXCAT will
now terminate. Boot DOS and CATALOG the practice diskette.
You will see this:

DISK VOLUME 001

A 002 UNKNOWN FILE #00
B 002 UNKNOWN FILE #01
A 002 UNKNOWN FILE #02
T 002 UNKNOWN FILE #03

Now it is time to try to identify the files and rename them to
something more sensible. LOAD the first file into BASIC and LIST
it. It is the HELLO file (10 END) so RENAME it as follows:

RENAME UNKNOWN FILE #00,HELLO

Since there was only one binary file on the practice diskette, it is an
easy task to identify it:

RENAME UNKNOWN FILE #01,BINARY FILE

LOAD the other APPLESOFT program and LIST it. It is the
program we called APPLESOFT PROGRAM:

RENAME UNKNOWN FILE #02,APPLESOFT PROGRAM
This leaves only the T (text) file called TEXT FILE:
RENAME UNKNOWN FILE #03,TEXT FILE

This diskette is back to exactly the same state prior to our zeroing
its catalog track.

Of course, identification of files on other diskettes may not be as
easy as this. Binary files can be BLOADed and examined in memory
(or with ZAP). Text files can be examined with ZAP, and BASIC
programs can be LOADed and listed. FIXCAT will occasionally
guess the file type incorrectly. If this happens, DELETE the file
and run FIXCAT again, searching for lost files. When the file is
found again, override the prompt on the file type and try something
else. In general, FIXCAT's algorithm for determining file types will
be accurate about 95% of the time. It is never accurate for S or R
files, however. Anyway, the important thing is that the files are
recovered!

6-40

APPENDIX
A DISCUSSION OF
DISK I/0 ERRORS

The purpose of this appendix is to provide information to the Apple
disk user that will be of some help in both understanding and
correcting diskette errors. This discussion is by no means
exhaustive nor highly technical. However, it does summarize some
of the insight the authors have gained through many hours spent
attempting to repair diskettes, in many cases successfully.

While we know that you have heard this particular message before,
it bears repeating. Back up your important diskettes! We have
learned by experience that no matter how careful you are, sooner or
later you will encounter an I/O error on a diskette. You probably
have some diskettes that are not recoverable by any practical means
besides backup, and these are the most important diskettes to have
copies of. In this case, we recommend heeding the warning of the
pessimists who maintain that your most vital data will always fail
first.

SYMPTOMS AND POSSIBLE SOLUTIONS

Below are listed some of the symptoms you are likely to encounter if
a diskette has been damaged in some way. In each case the likely
location of the error is given and a possible solution is suggested.
The section titled Data Errors contains more detailed information on
data recovery and reconstruction.

Disk doesn't boot (spins with no recalibrations)

There are two possibilites. First, you may have a good diskette, but
you are trying to boot a 13 sector diskette without using the BASICS
diskette. Second, track 0 of the diskette is damaged. Most likely
at fault is sector 0 of track 0. Try putting a new copy of DOS on
the diskette.

Disk doesn't boot (recalibrates)

It is likely that the portion of the diskette containing DOS (Tracks 0-
2) is damaged. Install a new copy of DOS.

Disk starts to boot then recalibrates and I/O error message displayed

The VTOC is read first, then the CATALOG sectors, and finally the
"HELLO" file, any one of which could cause the error. To further
isolate the area try to CATALOG the diskette or LOAD the
"HELLO" program.

I/0 Error on CATALOG command

Either the VTOC or one or more CATALOG sectors are damaged.
FIXCAT should provide a solution to this problem.

1/O Error during file access (LOAD, BLOAD or READ)

Either the TRACK SECTOR LIST or one or more sectors in the file
itself are damaged. ZAP should help you further isolate the exact
location.

Recalibration occurs during successful operation

While the diskette may simply be off center, it is likely that an error
occurred from which DOS was able to recover by repeatedly
attempting to read the sector in question. This type of error may
become permanent and should be fixed quickly. Copy the diskette if
possible, and see Data Errors for information on rewriting the faulty
sector(s).

NATURE OF DISKETTE ERRORS
Media Errors

A media error means that there has been some physical damage to
the media itself. You usually will not be able to reformat a diskette
with a media error, although some utilities exist that simply mark
the damaged area in use, allowing the rest of the diskette to be
used. It would not be advisable to run FIXCAT on a diskette that
has a suspected media error.

Data Errors

A data error may or may not be recoverable, but the media itself is
undamaged and can be reformatted. There are two categories of
data errors.

The first category of data errors includes those that are caused by
airborne contaminants, random electrical noise, or small magnetic
defects not detected during the write operation. These errors tend
to be recoverable because a good read of the data can often be
achieved by repeated attempts to read the damaged sector. The
first step should be to reread the sector 12 times or until a good
read is accomplished. If that fails, read adjacent tracks and then
attempt to reread the damaged sector. It might also be wise to
remove the diskette, center the media in its jacket, and reinsert it
in the disk drive. If the data cannot be recovered by the above
mentioned technique, it is unlikely to be recoverable through normal
means. Because there are many different ways a particular error
can occur, it is beyond the scope of this manual to deal with all
possibilities. On rare occasions it is possible to determine the
precise abnormality using TRAX, and either patch DOS or write a
special program to read a sector with that particular abnormality.
This is only suggested for users with an excellent understanding of
DOS and diskette data formatting.

The second category of data errors consists of those errors that
always destroy data. There are two ways that these errors manifest
themselves, and it is suspected that hardware is the cause in both
cases. The first type of error in this category is a sector that can
be read but now contains spurious data. The error occurs while the
data is in memory and then the bad data is written to the diskette.
The classic example is to load your BASIC program into memory
only to discover some portion of it is now garbage. Unless you have
another copy of that particular portion of data, it is lost. The
second error occurs while writing to the diskette and totally
destroys one or more sectors, in some cases an entire track. An
example would be to SAVE a file to disk and then discover that the
VTOC and one CATALOG sector was destroyed. That data, although
not readable, may not necessarily be lost because those areas of a
diskette are usually reconstructable. What follows is a brief
description of how to deal with particular kinds of data loss.

A-3

We can break the diskette down into six basic kinds of data storage,
which are as follows:

DOS

VTOC

CATALOG

TRACK SECTOR LIST
FILE

UNUSED SECTORS

The first three are all reconstructable, although some information,
namely program names, may be lost. Fortunately, that is often not
critical. DOS is restored by running the appropriate utility on the
System Master diskette (MASTER CREATE on DOS 3.3) and the
VTOC and CATALOG can be reconstructed by FIXCAT. Either
situation might call for the use of INIT first if you are unable to
write to the diskette. (See the tutorial entitled FINDING AND
CORRECTING FORMAT ERRORS.)

Of the last three, when the error occurs in an unused sector, it poses
little threat (although it would be best to deal with it to insure no
future problems). INIT works very well to recover those sectors.
The remaining two, TRACK SECTOR LISTS and FILES, are often
impossible to reconstruct. The degree of difficulty depends entirely
on the particular diskette (how many files it contained, etc.) and on
your knowledge concerning the missing data. It might be easy to
reconstruct a TRACK SECTOR LIST on a relatively empty diskette,
but the task may prove impossible on a full diskette with many files.
FIXCAT can provide you with a great deal of helpful information by
locating all valid TRACK SECTOR LISTS and FILES. If the error is
in a FILE you are really at the mercy of how much you know about
the FILE. See the tutorial titled LOCATING AND FIXING AN I/O
ERROR for some hints on how to proceed.

BACKING UP DAMAGED DISKETTES

When trying to recover data from a damaged diskette, it is often
best to make a copy of the diskette to avoid further loss of data.
The problem is that many copy programs will not copy a diskette
with one or more bad sectors. There is a relatively easy patch that
allows the copy program provided on the Apple 3.3 System Master to
ignore I/O errors. The patch forces the program to continue until
all 35 tracks have been attempted, recalibrating two times for each
sector not found. The following paragraph explains how this patch
can be made.

A-4

Although the patched copy program will continue to operate
correctly for normal diskettes, you should make a copy of your
System Master before proceeding. To apply the pateh, boot the Bag
of Tricks diskette and select ZAP. When ZAP is running, insert the
copy you made of the System Master into either disk drive. (If drive
2 is used select it by typing S,2 on the ZAP prompt line and press the
RETURN Kkey.)

Now type the ZAP command OPEN'COPY.OBJ(' followed by the
RETURN key. This will display the first portion of the System
Master copy program on the sereen. Type E5 to position the cursor
to the correct byte. The inverse cursor should display the value 60.
If this is not the case, please check and see that you have followed
directions correctly. The value 60 needs to be changed to an EA.
Simply type :EA followed by a RETURN to make the change. After
verifying that you have made the patech correctly, type UNLOCK
WRITE and press RETURN. Your patch is now complete. The
patched System Master copy can be used to copy damaged diskettes.

NOTES

; QUALITY
Bag of Tricks SOFTWARE

	Bag of Tricks Manual
	Title Page
	Table of Contents
	Acknowledgements
	Chapter 1: Introduction
	Loading the Bag of Tricks Disk
	The Four Programs & What They Do
	TRAX
	INIT
	ZAP
	FIXCAT

	Making a Practice Disk
	To Get a Backup Copy of Bag of Tricks

	Chapter 2: TRAX
	TRAX Tutorial
	TRAX Commands
	Analysis Mode Commands
	Raw Dump Commands
	TRAX Messages
	Summary of TRAX Commands

	Chapter 3: INIT
	INIT Tutorial
	INIT Options
	INIT Messages
	How Sector Skewing Can Affect Disk Performance

	Chapter 4: ZAP
	ZAP Tutorial
	ZAP Commands
	Inpt/Output Commands
	Buffer Modify Commands
	Comparison Commands
	Option Switch Commands
	File Commands
	Printer Commands
	The Buffer Command
	Macro Commands
	Label Commands
	Trace Commands
	Miscellaneous Commands
	ZAP Error Messages
	Summary of ZAP Commnands
	Alphabetical Listing of ZAP Commands

	Chapter 5: FIXCAT
	FIXCAT Tutorial
	FIXCAT Messages

	Chapter 6: Advanced Tutorials
	Identifying & Correcting Formatting Errors
	Improving Access Times for DOS Disks
	Changing Volume Numbers
	Finding the A & L Values of a Binary File
	Patching DOS Using ZAP
	Examining/Changing BASIC's Random Text Files
	Releasing Unused Space in Files
	Scanning a Disk for I/O Errors
	Locating & Fixing an I/O Error
	Copying Pascal Files to DOS Using ZAP Macros
	Comparing Files Using ZAP Macros
	Patching a Machine Language Program Using ZAP
	Recovering Lost Sectors in the VTOC Freespace Map
	Reclaiming Tracks 1 & 2 for Filespace
	A DOS-less Boot Program
	Un-Deleting a File
	Reconstructing a Blown Catalog

	Appendix - A Discussion of Disk I/O Errors
	Symptoms & Possible Solutions
	Nature of Disk Errors
	Backing Up Damaged Disks
	Notes

	Back Cover

